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Dynamic critical behavior of an extended reptation dynamics for self-avoiding walks
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We consider lattice self-avoiding walks and discuss the dynamic critical behavior of two dynamics that use
local and bilocal moves and generalize the usual reptation dynamics. We determine the integrated and expo-
nential autocorrelation times for several observables, perform a dynamic finite-size scaling study of the auto-
correlation functions, and compute the associated dynamic critical expanéisthe variables that describe
the size of the walks, in the absence of interactions we fin@.2 in two dimensions and~2.1 in three
dimensions. At thed point in two dimensions we have=2.3.
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[. INTRODUCTION lapsed phase and of the folding of heteropolymers. Similar
moves were introduced in Ref81-34.
The lattice self-avoiding walKSAW) is a well-known The ergodicity properties of these algorithms have been

model for the critical behavior of a homopolymer in a sol- discussed in Ref[16]. Here, we will study the dynamic
vent[1,2] and it has also been extensively used in the studyroperties of two different implementations. The first one,
of several properties of heteropolymdi34]. The earliest the extended end-end reptati@ER) algorithm, is obtained
simulations either used a local dynamids in which, at by performing at the same time reptation moves and bilocal
each step, a small part of the walksually 2—4 consecutive Kink-kink moves. Such an algorithm is quite efficient. In the
bead$ was modified, or the so-called reptation dynamicsabsence of interactions, the autocorrelation time for quanti-
[6-9]. All these algorithms are, however, nonergodicties that measure the size of the walk—for instance, the end-
[7,8,10-12 and only a limited fraction of the phase space isto-end distance or the radius of gyration—scalesasvith
visited. Note that, contrary to some claims in the literaturez~2.2 in two dimensions and~2.1 in three dimensions.
the deviations are sizable even for very short walks if one isThe behavior of the energynumber of nearest-neighbor con-
interested in low-temperature properties, i.e., polymers in théacts among nonconsecutive links even faster, withz
compact phase or heteropolymers near the folding tempera=1.7 in both dimensions. We have also tested the behavior
ture [13—15. For instance—see footnote 4 in REL6]—if of the algorithm at the? point in two dimensions. We find
one uses the Verdier-Stockmayer algoritfshin two dimen-  that the critical behavior is only marginally worse, with
sions, one does not sample 3.2%, 1.4%, 5% of the most 2.3, both for metric quantities and for the energy. We have
compact configurations foN=11,13,15. These ergodicity also studied a different version, the extended kink-end repta-
problems can be solved by using a different enseriible-  tion (KER) algorithm, in which the reptation moves are re-
20], chain-growth algorithmg21-24, or nonlocal algo- placed by kink-end moves, i.e., by moves in which a kink is
rithms [25—-30. However, in the presence of interactions, cleaved and two additional links are attached at the end of
nonlocal algorithms become inefficient since nonlocal moveshe walk and vice versa. This version is much slower, with
generate new walks with large energy differences and thug~2.9 for quantities that measure the polymer size. Clearly,
they will be rejected making the dynamics very slow. Chain-reptation moves are essential to obtain a fast dynamics.
growth algorithms may work much better but, in order to The paper is organized as follows. In Sec. I, we define
make them efficient, one must sample a different probabilitthe model and the observables whose critical behavior will
distribution, and thus one may be worried by the introducede studied. In Sec. Ill, we define the basic moves and the two
bias. dynamics. Specific implementation details are reported in the

In this paper, we wish to discuss a family of dynamics thatAppendix. In Sec. IV, we define the autocorrelation times,
use bilocal moves and generalize the reptation dynamics: e dynamic critical exponents, and the methods we use to
bilocal move alters at the same time two disjoint smallcompute them. In Sec. V and Sec. VI, we discuss the critical
groups of consecutive sites of the walk that may be very fabehavior of the EER and of the KER algorithms in the ab-
away. Since a small number of beads is changed at each steggnce of interactions, while in Sec. VII we discuss the be-
these algorithms should be efficient in the presence of intefhavior of the EER algorithm in two dimensions at tide
actions, and thus they can be used in the study of the copoint. Conclusions are presented in Sec. VIII.

. . . . Il. DEFINITIONS
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N-step SAWw is a set ofN+1 lattice siteswg, ... ,oy, = =
such thatw; and w; ., are lattice nearest neighbors, and | — |
# w;. By translation invariance we may fix, to be the - -
origin.
We consider several observables that measure the size « (A)

anN step SAW:
The mean square end-to-end distance

Ri=(wy—wo)% () l — l —
— -— P e— - -
The mean square radius of gyration
N N 2 ® ©
, 1 1
Ry= N+ 1 Z (“’i_N+1 - “’k) FIG. 1. All one-bead movesia) One-bead flip.(b) 90° end-
=0 k=0 - ;
bond rotation(c) 180° end-bond rotation.
1 N ,
:2(N+1)2 i’jzzo (0= o)) 2 The critical valueg, depends on the model, on the lattice

type, and on all microscopic details. For the model we con-

The mean square monomer distance from an end point Sider here we have: on the square latite=0.665(2) (Ref.
[42]) and B,=0.667(1) (Ref. [43)]); on the cubic lattice3,

1 N =0.276(6) (Ref.[44]) and 8,=0.2690(2)(Ref. [23]).
Ri=S7 2 (@~ 0o 3
N+1 <o
Moreover, for each SAW, we define the number of nearest- . ALGORITHMS
neighbor contactg. It is defined as follows. For eveliy# For the simulation of weakly interacting walks, i.e., for
we define B<pBy, there exist powerful nonlocal algorithnj27,30.
However, these algorithms cannot be used in confined
1 if |wi—wj|=1, geometries—they are not ergodic—and are very inefficient
Cij= 0 otherwise. @ in the presence of strong interactions. Indeed, in these con-
ditions nonlocal moves are rarely accepted. In this paper, we
Then, consider two algorithms that use local and bilocal moves
[16]. A local move is the one that alters only a few consecu-
N-2 N tive beads of the SAW, leaving the other sites unchanged. A
E=— 2 . E Cij - (5  bilocal move is instead the one that alters two disjoint small

groups of consecutive sites of the walk; these two groups

. . may, in general, be very far from each other.
Note that we do not include here the trivial contacts between In our study we consider two types of local movese

consecutive walk sites. Fig. 1):
_ We give each SAW» a weightW(/3) depending on the = ' 510 head flips in which onénternal bead [ie.,
inverse temperatur@=1/KkT, w(i), 1=i=N—1] only is moved.
1 (L1) End-bond rotations in which the last step of the walk
W(B)=5—e #, (6) s rotated.
Zy We also introduce several types of bilocal moves:
. - 5 (B22) Kink-transport moves in which a kink is cleaved
where Zy is the partition sum. The mean valueRe)n,  from the walk and attached at a pair of neighboring sites

2 2 H i v
(Rg)n. and(Rp)y have the asymptotic behavidt® asN  somewhere else along the walkee Fig. 2 note that the
—oo, Wherev is a critical exponent, which is independent of

the microscopic details of the lattice model but depends on
B. For B< B, (good-solvent regimethe SAW is swollen:
v=23/4 in two dimensions anfB5] »=0.58758(7) in three
dimensions(see Ref[36] for a review of estimates of in ——

C D C D

three dimensions For 8> B, the SAW is compact withv A — - A
=1/d. For the very specific valug= 3, (6 point), B B
4
2 d=2 (Ref.[37]),
V= (7) FIG. 2. The kink-transport move. A kink has been cleaved from
EXIn d=3 (Refs.[1,38-41). AB and attached at CD. Note that the new kink is permitted to
2 ' ’ occupy one or both of the sites abandoned by the old kink.
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M | Y In order to have a fast and efficient implementation, it is
— important that local and bilocal moves are performed in a
B : B CPU time of order one, i.e., constantlds~. This can be

obtained only with a careful choice of the data structures
used to store the walk coordinates. For local and end-end
FIG. 3. The kink-end reptation—) and end-kink reptation remati(.)n movgs i.t s Sqfﬂdent to Sto.re the walk coordinates
(—) moves. In (), a kink has been cleaved from AB and two 25 & circular I|§t in which the coordinates of the bead§ are

ored sequentially. However, such a data structure is not

new steps have been attached at the end marked X. Note that tﬁé ; . . . .
gonvenient for B22 and BKE moves, since in this case inser-

new end steps are permitted to occupy one or both of the site . . ) . .
abandoned by the kink. tion and deletion of a single point requires a time of order
The problem is solvedl45] by storing the coordinates in a
new kink is allowed to occupy one or both of the sites abancontiguously allocated doubly linked linear listhe coordi-
doned by the old kink. nates are stgred contiguously but not in any particular order.
(BKE) Kink-end and end-kink reptation movésee Fig. In order to find the bead that foII_ows and pre_zcedes a given
3). In the kink-end reptation move a kink is deleted at one®n€, one keeps two arrays of pointers that give the location
location along the walk and two new bonds are appended il the coordlnate I|s_t of the preceding and of .the successive
arbitrary directions at the free end point of the walk. On theWalk bead. With this type of data structure, insertions and
contrary, an end-kink reptation move is characterized by dedeletions take a time of order one. An efficient implementa-
letion of two bonds from the end of the walk and insertion oftion requires also the ability to perform the self-avoidance
a kink, in arbitrary orientation, at some location along theCheck in a time of order one. This may be obtained by using
walk. a bit table—however, this is only possible for short
(BEE) Reptation move in which one bond is deleted fromWalks—or a hash tablg. In this second case, one must be
one end of the walk and a new bond is appended in arbitrar(}arer| to_use a has'hlng 'method that allows to mse'rt_ and
direction at the other end. delete a single point in a time of order one. A very efficient
Using these elementary moves we introduce three differMethod is described in Reff46].
ent updates that leave invariant the Gibbs meagjteThey
are described in detail in the Appendix. We will then con- V. DYNAMIC BEHAVIOR
sider two algorithms(a) extended end-end reptatiRER)
algorithm; (b) extended kink-end reptatidiER) algorithm.
The EER algorithm consists in combining with nonzero
probability the reptation move and the kink-kink local/
bilocal move, see Sec. 1 and Sec. 2 of the Appendix for th
implementation detail;. More precisely, with prqpabil'py Can(D)=(AAq. ) —(A)2, (8)
one performs a reptation move, and with probability @ a
kink-kink local/bilocal move. The KER algorithm works and its normalized counterpart,
analogously: instead of the reptation moves, we use the kink-
end/end-kink BKE moves. Both algorithms are known to be par=Can(t)/Can(0), 9
ergodic in two dimensions, while fod=3 ergodicity has ) . ] .
been proved only for the KER algorithfii6]. For the EER ~ Wheret is the dynamics “time.” Typically,paa(t) decays
algorithm ergodicity is still an open problem. The probability €xponentially, '-e-aPAA(t)N(?*W_T, for large|t|. We define
p is not fixed, and can be tuned to obtain the fastest dynarihe exponentialautocorrelation time
ics. However, it should not have any influence on the dy-
namic critical behavior, i.e., on the dynamic critical expo-

In order to determine the efficiency of the dynamics, we
study the critical behavior of the autocorrelation times. Quite
generally, given an observabe we define the unnormalized
gutocorrelation function

1t

. . T =limsup————, 10
nents. For this reason we have not performed a systematic expA mﬂwp —In|paa(t)| (10
study of the dependence of the numerical resultp and we
have simply sep=0.50 in most of our simulations. and theintegratedautocorrelation time

TABLE |. Exponential autocorrelation times for the EER algorithm in two and three dimensions. “iter.”
is the number of iterations.

d N iter. TeXpRg Teprg Teprzm Texpé
100 5.77 101 3230+ 20 306224 319G+ 16 307840

2 300 5.3& 10" 43600+ 900 473001500 43146760 356001260
1000 6.90<10"  710400:-42000 85960846000 74500636000 448006 30000
100 4.36< 101 2980+ 40 3020+ 30 2968+ 30 2840+ 60

3 300 4.4% 101 32640+ 840 34700900 32980 840 27480800

1000 5.20<10'™  370400-22000 37480624000 36800622000 300806 16000
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+o0 1 = 48000
A=y 2 Pa(S)=5F 2 pan(s) (1D

i |
The factor 1/2 is inserted SO thaty o= Texpa if paa(t) sl
= e [17ewa With Tg,pa>1. 420000 L
In order to estimater,,,, we will proceed as follows. If
paa(t) is the normalized autocorrelation function estimated
from the data, we define an effective exponent

( paat)
In| ———

s)

PN

360001

Tt

-1

Texpa(1iS)=$ , (12)

paa(t+s)

wheres is some fixed number. This quantity should become 30000y

independent of ast— <. In practice, we look for a region in
which the estimates are sufficiently stable witland then
take the value of}eXpA(t;s) in this region as our estimate of 24000
Texp,a- IN Order to apply the method we should also choose 0 40000 80000 120000 160000
the parameters. It should be neither too small, i.es t
< Texpas Otherwisepaa(t)=paa(t+s), nor too large, i.e.,
S> Teyp a,» Otherwise the error oﬁAA(Hs) is large. In our
study, we have always fixeslself-consistently, by taking
~ Toxp,alK With k~10-20.

In order to estimate;, o, We use the self-consistent win-

dowing method proposed in R€f10]. We define our esti- ) , -
mate as paa(t) proportionally to 1f for t>M, [i.e., setpaa(t)

=M;3AA(M)/t for t>M], and then used this expression to

FIG. 4. Effective exponen@eXpRé(t;s) for the EER algorithm.

Here d=2, N=300, s=2000. The horizontal line corresponds to
our final estimatefreprg=43 600 and the dashed lines to one

error bar(900).

- Mo compute the contribution tay, , from the regionM <t
TinA~ 75 t:E_M paa(t), (13 <7pa. This gives the modified estimate
R +M r
. . . ) ~ ~ ~ A
whereM is the smallest |nteg§r thatAsaUs.flhf? CTint a and TntA=5 S paa(t)+ MPAA(M)In( e'\>;|p . (19
c is a fixed constant. The variance gf; » is given by t=-M
R 2(2M+1). In general, the autocorrelation times divergeNas:. We
var( Tin a) =~ . rﬁmA, (14 can thus define two dynamic critical exponeats,, and
Zint,A by
wheren is the number of Monte Carlo iterations and we have - NFma
made the approximation,, <M <n. The method provides Tint,A i
quite accurate estimates gf; , as long ag is chosen so that Texpn~ NZex0A, (16)

M is a few times7e,,a. There are cases in whichya

< Texpas SO that the previous condition is difficult to satisfy.  The dynamic critical exponents can also be obtained by

In this case, a successfatl hocrecipe was proposed by Li requiring the autocorrelation function to obey a dynamic
et al.[47] for the pivot algorithm. They noted that, whévis  scaling law of the fornj45,48,49

one of the radii,paa(t)~1t9 in the intermediate region
Tt A<U= Texpa, With q~1-1.2. Thus, they extrapolated pan(t;N)=|t| "2F Aa(IN"P)=N"3PG, A(tN"P), (17)

TABLE Il. Dynamic exponent,, for the EER algorithm in two and three dimensions, obtained by fitting
Texp=BNe®. The number of degrees of freedom of the fit is 1.

d 7'eprS TexpR2 TexpR2, Texp€
Zexp 2.37+0.02 2.46-0.02 2.36-0.02 2.18-0.02

2 B 0.0610+0.0048 0.0376:0.0032 0.0586:0.0030 0.1330.013
X2 1.18 1.03 0.52 2.33
Zexp 2.10+0.03 2.110.04 2.16:0.03 2.04-0.03

3 B 0.196+0.032 0.186-0.028 0.19@-0.030 0.242-0.028
X2 1.13 1.90 1.31 1.57
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TABLE lll. Integrated autocorrelation times for the EER algorithm in two and three dimensions.

d N 7'int,Rs 7'int,Rg 7'int,Rﬁq Tint,&
100 3113.6:5.6 2209.223.4 2124.4-3.2 861.64-0.82

2 300 3600672 2425040 2376438 5596.4-4.4
1000 5228863520 337226:1820 3346061800 3922472
100 2729.@:5.2 1761.2-2.8 1780.6:2.8 925.4-1.0

3 300 2709252 1677226 17162: 26 6035.8-5.4
1000 33290682100 199166960 2051061000 42954 96

valid in the limit N—, |t|—o, with tN~° fixed. Here,
a,b>0 are dynamic critical exponents akgd, andG,, are
suitable scaling functions. IF,5(X) is continuous, strictly
positive, and rapidly decaying—e.g., exponentially—als
—oo, then, it is not hard to see that

ponent}eprg(t;s) for N=300, d=2, s=2000. It increases
with t and becomes constant within error bars for

=106 000. We have taken our estimate tat 130000
%376pr§. The same analysis has been done for all observ-

ables and all values df. The results are reported in Table I.
We have determined the dynamic exponeg}a by fit-
ting the results of Table | with the ansatz

ZexpA™ b, (18

Zma=(1l—a)b (if a<l). (19

. . TEXDA: BANZeXpA_ (20)
The exponenta andb can be determined by requiring the

collapse onto a single curve of the autocorrelation functions . )
corresponding to different values bf Then, using the pre- The results are reported in Table Il. Since we only have three
vious formulas, one can determiagg, andzj . The ad- values ofN, we cannot study the effect of corrections to
vantage of this method is in its bypassing the problem ofcaling and thus we cannot determine the systematic error on
determiningre,,a and iy 4, but it is quite difficult to assess OUr results. However, an indication can be obtained by com-

the errors, since the optimal values are determined visuallyParing the results for the three radii. Indeed, one expects
these three observables to have the same dynamic exponent.

In two dimensionszeprg differs significantly from the esti-

mates for the other radii, indicating the presence of large
corrections to scaling. Such conclusion is confirmed by the
We performed an extensive Monte Carlo simulation ofscaling analysis that will be reported below: as we shall see,
noninteracting f=0) SAWSs on the square latticél=2, the results of Table Il in two dimensions are effective expo-
and on the cubic latticed =3, using the EER algorithm. We nents that are expected to decrease as larger valudsacd
setp=0.5 and used the first version of the reptation moveincluded in the fit. Of course, it is possible that algg, is
see Sec. B of the Appendix. We considered only three valuesffected by large corrections to scaling. However, the scaling
of N, N=100,300,1000, but for each of them we collected aanalysis confirms the result fag,,., thus showing that the
very large statistics, see Table I. We measu(&g)N, scaling corrections are important for the radii only.
(R%)y, (R2)y, and the energyy, i.e., the number of In three dimensions, there is no evidence of large scaling
nearest-neighbor contacts. We compared the static results obrrections. Indeed, the exponertg, for the three radii
our simulations with those of Lét al. [47], finding good agree within error bars. The dynamic exponent for the energy
agreement. is lower than that for the radii. However, the difference is
First of all, we measured the exponential autocorrelatiorsmall and it is not clear if it is real or just the result of
times. As an example, in Fig. 4 we report the effective ex-neglected corrections to scaling.

V. THE EER DYNAMICS IN TWO AND THREE
DIMENSIONS

TABLE IV. Dynamic exponeng;,, for the EER algorithm in two and three dimensions, obtained by fitting
7= BNZnt. The number of degrees of freedom of the fit is 1.

d Tim,RS Tint,R2 Tint,R2, Tint,&
Zint 2.227+0.002 2.182-0.002 2.198 0.002 1.6730.001
2 B 0.1100+ 0.0010 0.0956 0.0008 0.0856: 0.0008 0.392-0.002
X2 0.660 1.04 0.054 1470
Zint 2.088+0.002 2.052-0.002 2.062-0.002 1.6810.001
3 B 0.1820+0.0020 0.1386:0.0012 0.13380.0010 0.392-0.002
x? 0.804 0.625 0.191 851
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TABLE V. Dynamic exponents andb for the EER algorithm in two and three dimensions.

d R3 R2 R &

2 b 2.21+0.02 2.26-0.02 2.22:0.02 2.14-0.02
a 0.0010G+0.0010 0.0025 0.0020 0.0020.002 0.2850.025

3 b 2.085+0.015 2.0680.015 2.0850.015 2.036-0.025
a 0.0012+0.0010 0.0025 0.0025 0.001% 0.0015 0.216-0.020

Then, we have computed the integrated autocorrelatioifhe fit for the energy has a very larg€. There are two
times by using the self-consistent windowing method withreasons for this. First, the statistical errors are underesti-
c=15, cf. Eq.(13). The results are reported in Table Ill. mated, as we already discussed. Second, there may be

For the radii, 7expre~1-27i g2 and thus the choice  large—compared to the tiny statistical errors—corrections to
=15 should be rather conservative. For the eneegyl5  scaling. For these reasons, the errors quoted in Table IV for
corresponds t0 18R,ps<M <47, in two dimensions and  Zy ¢ should not be taken seriously. A more realistic estimate
10 27¢xpe=M =57, in three dimensions for our values of is obtained by multiplying the errors byx 2, which gives an
N [M is the cutoff defined in Eq13)]. Such values ol can  error of =0.04 on the exponent in both two and three dimen-
give rise, at least foN= 1000, to a systematic underestimate sions. Such error is more realistic and indeed is close to the
of 7iye. For our choice ofc and for N=1000, pc<(M)  error we quoted for the radii, cf. E¢22).
~(7.2+1.5)10 % and (4.9-1.0)10 * in two and three di- The dynamic critical exponents can also be determined by
mensions, respectively. Therefore, assuming a pure exponeanalyzing the scaling behavior of the autocorrelation func-
tial behavior fort>M, the neglected contribution should be tion, see Eq.(17), i.e., by determininga and b so that
of order 320-60 ind=2 and 1506-30 ind=3. The correc- Nab;,AA(t) is a universal function ofN ", independent o.
tion is quite small, but larger than the quoted error bars: thén Table V, we report the values &f and b for which a
correct errors are at least larger by a factor d2bin two  collapse of the autocorrelation functions is observed. In Fig.
(threg dimensions. 5, we show the corresponding plots fB and £ in two

The results forr o have been fitted with the ansatz dimensions.

-~ 2 For the energy we observe a very good collapse, while for
Ting, A= BANTA. 2D the radii the scaling behavior deterioratess® increases
The results are reported in Table IV. Since the vert_ica}I scale changes by sgv_eral orders of magni-

The error bars are purely statistical and, as in the case dfde; the deviations are somewnhat difficult to observe and
Zexp, large systematic errors may be present. We expect thiflis makes difficult to set the errors anand b. For this
quantities that measure the walk size to have the same durPose, we found more useful to consider, instead of
namic exponert;,,. Thus, both in two and three dimensions, N*°paa(t), the quantity
the reported errors are largely underestimated. More conser-

—b
vative estimates are N — tN
TscaIA(tv N)=— |n(NabA ) (23
PAA
Znr2=2.20+0.03, d=2,
that is also a universal function 6N~ in the scaling limit
Ziyr2=2.07+0.02 d=3. (220 and that scales ag,,aN P for tN~P—co.
2
05 | ° N=100 05} % = N =300
s N=300 2 = N =100
> N =1000 X o N =1000

15} -15 |
g 25 2 25 )
< £
£ £

-35 -35

-45 -45 |

-55 : : : : B -5.5 : : : :

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20
tN"® tN"’

FIG. 5. Dynamic scaling analysis for the EER algorithm in two dimensions: pIots[bF%AA(t)] vs NP, Left frame: A=R?, a
=0.001,b=2.21; right frameA=¢&, a=0.285,b=2.14.
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0.150 0.080

8 » N =300
s N =100
> N =1000
AAAAAAAAAAAAA 0065 °
0130 |
z % 0.050
= 1
S
0110 |
2 © N=100 0.035]
9 4 N=300
: o N =1000
o
0.090 : : ‘ s 0.020 s : s A
0.00 0.10 0.20 0.30 0.40 0.50 0.00 0.05 0.10 0.15 0.20
tN™ tN™

FIG. 6. Dynamic scaling analysis for the EER algorithm in two dimensions: plots,Qfa(t;N) vs tN=°. Left frame:A=R2, a
=0.001,b=2.21; right frameA=¢, a=0.285,b=2.14.

In Fig. 6, we report the quantitysc, a(t;N) for RS and&.  region there is no scaling, and thus the correspondings
The energy shows a very good scaling behavior while thelo not scale adl?x®. For this reason, we believe the esti-
scaling is quite poor foRé, although it improves a8l in- mates of Table Il to be grossly in error. Note also that the
creases: the data fdi=100 andN=300 overlap up to estimate we obtain in the scaling analysis,r~2.21, is
tN~P~0.05, while the data fo =300 andN= 1000 overlap compatible Withze,,r2~Zn g2, @ relation that is expected to
up totN~°~0.09. be true, since the radii are strongly coupled to the slowest

In three dimensions, all observables show a very goodnodes of the dynamics.
scaling behavior, as it can be seen from Fig. 7. In all cases, Then, we can computg ». For the radii, we always
the results for the three values Nffall onto a single curve. havea~0, so thaiz;, g2~ Zex,r2 as expected. This confirms

From the results of Table V we can compute the expothe results of Table IV. For the energy, we have instaad
nentsze,, andz;y, cf. Egs.(18) and(19), and compare them #0. Using Eq.(19), we obtain
with the previous results. In three dimensions, the estimates
of Zeyp obtair_1ed from the scaling analy_sis are in _perfect Zne=1.53+0.06, d=2, (24)
agreement with those of Table II. In two dimensions instead,
only ze,s is compatible with the results of Table II. The
estimates ofz,, for the radii obtained from the scaling Zint,e=1.60£0.05, d=3. (25
analysis are significantly lower than those obtained from fit-
ting the autocorrelation times. The origin of the discrepancyThese results are in reasonable agreement with those re-
can be understood from Fig. 6. The exponential time is deported in Table IV if one takes into account that, as we dis-
termined by the largé-behavior ofpaa(t) and in practice by  cussed, the error on those results is of order 0.04.
the behavior in the region in whictr37.,,z2, See Fig. 4, In conclusion, putting the results of the different analyses
which corresponds approximately i ~°~0.44. But in this  together, we obtain in two dimensions:

0.220 0.090
a N =100
& N =300
0.200 | o N = 1000
0.070 | MAAAé
0.180 | M@g@
z z
T ® g
0.160 | & E _a®
e}
k 0.050 | of
o N =100 . o
8 - 3
0.140 - * N=300 %MQ
o N = 1000
0.120 ] ‘ ‘ ‘ 0.030 : :
0.00 0.20 0.40 0.60 0.80 0.00 0.10 020 0.30
tN™ tN”

FIG. 7. Dynamic scaling analysis for the EER algorithm in three dimensions: plotg.gi(t;N) vs tN=P. Left frame:A=R2, a
=0.0012,b=2.085; right frameA=¢, a=0.210,b=2.03.
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TABLE VI. Exponential autocorrelation times for the KER algorithm in two and three dimensions. “iter.”
is the number of iterations.

N iter. Texp Rgz; TexpR2 TexpR2,
100 2.4< 10 37600+ 160 38006160 3862@-100
300 8.8< 10 918000+ 8000 958006 8000 9720068000
700 1.9< 102 11475000 315000 11610006 315000 11250006225000
ZexpRr2= Zinyr2= 2.20.1, All results we have discussed up to now refer to simula-
tions with p=0.5 and with the first version of the reptation
Zexpe=2.15+0.05, move. These choices are of no relevance for the critical ex-
ponents, but they have of course a strong influence on the
Zint ¢=1.60=0.10. (26)  amplitudes. We have thus tried to see the changes in the
dynamics due to a variation gf and to a change of the
In three dimensions we have reptation move. To check the role pf we have performed
simulations withp=0.1 andp=0.9 with walks of lengthN
ZexpR2= Zint,rz= 2.07+0.05, =100 in two dimensions. We find: fop=0.9, iy g2

= 2184+ 32 and iy = 1200+ 13; for p=0.1, 7iny 2= 8740

+260 andr, .=1181*+13. This should be compared with
Zpy e=1.65+0.05. (27) the results of Table III,rim,R?SllO andr, ~~862. Thus,

by increasing, there is a significant speed up of the dynam-

The errors are such to include the results of all analyses. ics of the radii—this should be expected, since reptation

Note thatzj, ¢<Zqyp¢ for the EER dynamics. This may be moves are essentially the only ones that change the position
understood as follows. The energy fluctuations are essemf the end point and are thus those that control the slowest
tially due to two causes. First, there are fluctuations due tenodes of the dynamics. Thus, for noninteracting SAWSs, for
local changes of the walk. These fluctuations are fast sincehich the energy is not an interesting observaplelose to
these are due to local and bilocal moves. Then, there arene—but notp=1, otherwise ergodicity is lost—is a good
fluctuations due to changes of the global structure of thehoice for a fast dynamics. On the other hand, the dynamics
walk. Indeed, there are contributions to the energy that aref the energy becomes slower both for=0.1 and forp
due to groups of monomers that are far apart along the walk-0.9. The fact thatr ¢ is larger forp=0.9 is easy to un-
but that are near in position space. Such contributions vargerstand. Indeed, by increasipgve decrease the probability
slowly, typically as7e,,g2, and are the origin of the fact that of performing LO and B22 moves that should be the most
Zexps™ Zexpre- HOWever, these contributions are very small,important ones for the energy. However, it is clear that rep-
and thus give rise to tiny fluctuations that are negligibletation moves are also relevant for the energy, sincepfor
when considering integrated quantities. Thereforg, .  =0.1, 7y, ¢ is also larger. Apparently, for smadlthe relevant
<Zeypg - quantity for the dynamics of the energy is the number of

Zexpe=2.05+0.05,

0.005

0.00375

In(p. (1)
|

0.00125

| -8.0 I I I I I

168000 336000 504000 672000 11.0 11.5 120 12.5 13.0
t In(t)

0.000¢
0

FIG. 8. Autocorrelation functiorﬁ)gg(t) for the KER algorithm in two dimensions. Hele=300. The straight line in the right frame
corresponds t®t™“, B=5100, a=1.29.
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TABLE VII. Dynamic exponentz,, for the KER algorithm in  not been able to determine the exponential autocorrelation
two and three dimensions, obtained by fitting,=BNe®. The  time for the energyf. Indeed, for the values dffor which

number of degrees of freedom of the fit is 1. pse(t) is not zero within statistical errorsp¢(t) has a
power-law behavior, i.egce(t)~t™ ¢, with a~1-1.3. This
TexpR TexpRZ TexpRe can clearly be seen from Fig. 8 where we rega#(t) for
Zoxp 2.92+0.01 2.94-0.01 2.92-0.01 N=300. , o
B 0.054+ 0.002 0.0560.002 0.054 0.002 _ The _results for the expone_nt!al autocorrelation times are
2 3.77 0.034 246 fitted with the ansat£20), obtaining the results reported in

Table VII. As before, we cannot perform a systematic analy-
sis of the scaling corrections. However, it is important to
successful moves, irrespective of the type. Indeed, using tHaotice that the estimates for the three radii agree within error
results of Sec. 1 :':md Sec. 2 of the Appendix we ,f"fm{#g bars. This confirms the correctness of the quoted error bars
~600 successful iterations both fpe=0.5 andp=0.1. and gives the final estimate

We have also tested the second version of the reptation
algorithm, see Sec. 2 of the Appendix. For random walks, Zexpe=2.93£0.02. (28)

this implementation gives~N compared tor~N? of the ) ) L )
first version. For the SAW, the two versions are expected td NS estimate is significantly higher than that for the EER

have the same critical exponents, but the second one shoufiyn@mics. The origin of such a large difference is unclear,
be faster. We have performed a simulation witk0.5 in since it is dlﬁlcglt to see any difference between BEE and
two dimensions, findingr, 2=510+4 and 7y, =299.8 BKE moves. Naively, one would have expected a BKE move

) ) to be equivalent to two BEE moves together with a B22
+1.6. These esnmatesz are sensibly smaller than those Ijoye. Since all moves have a finite probability of success as
ported in Table Ill. FoR; the dynamics is faster by a factor N_, e see Appendix, one would have expected a difference
of 6, and for& by a factor of 3. Clearly, the second imple- py 3 constant factor, and thus the same critical exponents.

mentation is the most efficient one and all our simulationssych a naive expectation is not true, since the exponents are
should have used it. Unfortunately, we thought of this secong|early different.

version only when all simulations were completed. We have then determined the integrated autocorrelation
times. For the radii we have used the self-consistent window-
VI. THE KER DYNAMICS IN TWO DIMENSIONS ing method of Sec. IV, using=15. The results are reported

in Table VIII. Sincereyyrz~ 37 g2, the choicec= 15 should

The second dynamics we have analyzed is the KER algise enough to avoid systematic errors. Instead, the autocorre-
rithm in which end-end reptation moves BEE are replaced byation function of the energy decreases rapidly and it has a
kink-end reptation moves BKE. It turns out that this dynam-very long tail. In this case, we have chosen a much larger
ics is much slower than the EER one, and thus we hav@alus ofc, c=200, obtaining the results that are reported in
limited our analysis to shorter walk$y=100,300,700, t0 Table VIII as Tint.c(NY). In spite ofc being such a large num-
two dimensions, and to noninteracting SAWs, Be=0. We  ber, the cutoff valueM, cf. Eq.(13), is still well within the
setp=0.5. Again, we measured three radii and the energyregion in which the function decays as a power law. For
The static results agree with those obtained by using the EERstance, folN=300, M =670 000 (InM~13.4) andp(M)
dynamics and discussed in the preceding section and with the 3.4x 104, see Fig. 8. This should be expected since the
results of Ref[47]. cutoff M satisfies M =< re,,re~10°. More precisely, M

As in the preceding section, we have first determined thec 3.37expres M~0.77gpp2, and M~0.14re,,p2 approxi-
exponential autocorrelation times by studying the large-timgnately for N=100,300,700. Therefore, we expect a sizable
behavior of the effective exponen%s_XpA(t;s), see Sec. IV. contribution from the tail of the autocorrelation function, at
The results for the radii are reported in Table VI. We haveleast for N=300,700. To take it into account, we use Eq.

TABLE VIIl. KER algorithm in two dimensions: integrated autocorrelation times and dynamic critical
exponentsz;,;, obtained by fittingr;,,= BN, The number of degrees of freedom of the fit is 1. For the
energy&, we report two estimategnt) is obtained by using the self-consistent windowing method with
=200, while(wt) is the result obtained including the tail contribution in the manner aftlal. (Ref.[47]).

N Tint,R2 Tint, R2 Tint,RZ, Ting,£(Nt) Ting, (W)
100 15632- 30 20974+ 48 2752872 847.5-0.4 847.5-0.4
300 341036:1640 4627062600 6485064300 3402.6:1.6 3484+ 4
700 3906508:43800 5325006 70000 7942006 127000 9269.65.1 1094890
Zint 2.820+0.005 2.83@:0.004 2.89@:-0.006 1.2336:0.0004 1.2890.0011
B 0.0360+0.0007 0.04640.0010 0.04580.0012 2.926:0.006 0.808:0.005
)(2 18.5 11.8 11.8 4197 41.7
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TABLE IX. Dynamic exponents andb for the KER algorithm
in two dimensions. For the energy, we have fixed 2.93+0.04
and determined the correspondiag

PHYSICAL REVIEW B5 031106

TABLE XI. Dynamic exponentiz,,, for the EER algorithm in
two dimensions at thé point, obtained by fittingre,,=BNew. The
number of degrees of freedom of the fit is 2.

R? R2

RS e m & 7'eprg TexpR2 TexpR2, Texpg
b 2.89+0.03 2.92-0.02 2.9200.02 [2.93+0.04 Zeyp 2.318:0.004 2.2750.003 2.300-0.004 2.3130.004
a 0.015-0.015 0.026:0.015 0.0150.010 0.676:0.015 B 0.126-0.006 0.1480.004 0.1280.005 0.116:0.006
X2 2.01 3.64 1.24 0.78

(15), where forre,, s we take the average,,g2 of the radi.
For N=300 the correction is of 2.5%®2.4% if we approxi-
mate pe-(t)~Bt~ 12 as obtained from the fitand for N
=700 of 20.39%418.1% if we approximatg.(t)~Bt 1las
obtained from the fit The results are reported in Table VIII
as iy «(wt). The reported error is obtained by summing 20%
of the contribution of the tail to the original error. This is an

Zexps= Zexpr2 While there is some evidence from the analysis
of the EER dynamics tha,, < Ze,,re. However, this does
not explain the difference, sinceif,,s decreases, alsy, ¢
decreases. In order to obtamy, .=1.3, one should take
Zexpe=h=3.35, which is much too large. Therefore, the dif-
ference should be taken as an indication of the scaling cor-

ad hocprescription which can be shown to work reasonablyrections.

in the exactly soluble case of the pivot algorithm for the
random walk.

In conclusion, the KER dynamics has a different critical
behavior with respect to the EER dynamics. For the critical

The results for the autocorrelation times have been fitte@xponents we have

with the ansatZ£21) in order to obtairg,,;. For the radii, the
quality of the fits is quite poor, with &> of approximately
10—-20. Moreover, the estimates do not agree within erro

bars. There are, therefore, corrections to scaling larger than

the very tiny statistical errors. By requirirmg, g2 to coincide
for these three quantities, we obtain finally

Zint r2= 2.85+0.06, (29
which includes all estimates and is compatible with the ex
pectationzin g2 = Zexpg2-

Fits of i ¢ are characterized by a very largé and give
Zint e~1.2—1.3, much smaller thary, g2. As in the EER al-
gorithm, the dynamics of the energy is much faster than th
of the radii. Note thar;, . is also significantly lower that the
corresponding exponent for the EER algorithm. Again, it is
quite difficult to understand intuitively why this happens.

The results reported above are confirmed by a scalin
analysis using Eq.17). The results for the radii are reported
in Table IX. The exponena is compatible with zero and
Zeyprz=b=2.9170.03, in agreement with the estimd&8).

Sincepgs(t) ~Bt™ “ for the values of we can investigate,
we cannot determina andb independently. Thus, we have
assumede, s = Zeypr2 and then useth=2.93+0.04, cf. Eq.
(28)—to be conservative, we have doubled the error. Corre
spondingly, we obtaina=0.670+0.015 and z,, =0.97

Ave

ZeprZZ Zint,R2: 290__*_ 005, (30)

r

Zppe=1.0+0.3, (31

VII. THE EER DYNAMICS AT THE 6 POINT IN TWO
DIMENSIONS

Bilocal algorithms are of interest for applications in con-
strained geometries and in the presence of strong interactions

where nonlocal algorithms are inefficient.
In this section, we study the dynamic behavior of the EER
algorithm at the# point in two dimensions, by setting
= B,=0.665—we have used the estimate of Ré2]. Here,
have studied longer walks than beforelN
=100,800,1600,3200, with large statistics, see Table X.
We have performed the same analyses we have presented
in the preceding sections. First, we determined the exponen-

%al autocorrelation times, see Table X, and the exponents

Zexpa, S€E Table XI. Clearly, the statistical errors are too
small. Indeed, we expect,,,, to be the same for all
observables—including the energy, that should be strongly
coupled to the slowest modes at thgoint—and this does
not happen with the quoted error bars. By direct comparison
of all estimates, we obtain the more conservative result

Zexp = Zexprz=2.30+0.03, (32

+0.05, which is somewhat lower than the estimates of Table

VIIl. One may think that this is due to our assumption

TABLE X. Exponential autocorrelation times for
“iter.” is the number of iterations.

where the error is such to include all estimates.

the EER algorithm in two dimensions ab theint.

N iter. Texp RS TexpR2 TexpRZ, Texpg
100 5.84< 10 5120+70 5220+ 60 5170+ 40 4856+ 44
800 6.28< 10" 609600 15000 60600¢ 10000 620006 8000 594206:- 9000
1600 1.8 102  316500@=22000 2840006 20000 3020006 20000 2936006 24000
3200 1.1X 10" 15838006-76000 138800050000 1499000850000 14656008 50000
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TABLE XIlI. EER algorithm in two dimensions at thé point: integrated autocorrelation times and
dynamic critical exponents,, obtained by fittingr;,;= BN%nt. The number of degrees of freedom of the fit

is 2.
N Tint,R? Tint,R2 Tint,R2, Tint,¢

100 4520-10 3166.2-5.8 3082.8-5.4 2504.4-4.0
800 55950@- 4100 3623062100 3579082100 2228061000
1600 2890408 28300 1779506 13700 1778006 13600 102950 6000
3200 1395300 120000 863000£ 59000 8698006 59000 418500€ 20000
Zint 2.321+0.002 2.282-0.002 2.29%0.002 2.1516:0.0011
B 0.1020+0.0013 0.0864 0.0008 0.0806 0.0010 0.1266 0.0008
e 9.0 1.22 3.73 149

We have analogously determined the integrated autocor- The result for€ is somewnhat lower, but the very largé
relation times using the self-consistent windowing methodndicates that corrections to scaling are significant. In order
with ¢=15. The results forr o are reported in Table XII. to see if there is a systematic trend we have determined an
Notice that in this case the integrated autocorrelation timesffective z, ., by computing
for the energy are close to those of the radii, as it should be

expected, since at theé point also the energy is a “slow” - Tint,e(N1) N\ 71

variable. In all casesea~1-37ina and thus the choice Zint,e(N1,N2) = Inrim “(Ny) InN—2 : (34)
c=15 should give a small systematic error due to the trun- '

cation of the autocorrelation functions. We obtain Eint,5(100,800)=2.15&3), iim,g(800,1600)

The integrated autocorrelation times have been fitted with - e
the ansatBN?n, in order to compute;, ». The results are =2.208(15),zy £(1600,3200% 2.023(15). It is difficult to

reported in Table XII. In all cases, the purely statistical errorsObserVe a systematic trend, but in any case a systematic in-
we have reported are too small. For the radii, the expone rease towards 2'.30. seems to be excluded. On the contrary,
z,+ should be the same, and thus the error is at least a factd fe dag? seem tohlndlcalte tmyghdecrea_ses belc;]w the value

of ten larger. Comparing the estimates of Table XII, we ar-0f Table Xll. Thus, also at thed point we havezy e

rive at the final result <Zexpg, although the difference is much smaller than in the
caseB=0.
Zint 2= 2.30+0.03, (33 These results are confirmed by a scaling analysis. In Fig.

9, we report the scaling variabkgcam% (t;N). We observe a

which, by comparing with Eq(32), gives zin,r2=Zexpr 8 very good scaling behavior and correspondingly we are able

expected. to obtain quite reliable estimates of the critical exponents
andb. The same good behavior is observed for all observ-
ables. The estimates af andb are reported in Table XIII.
For all observablesh is compatible with the estimates of
0.10 Table XI, confirming the estimat€32). For the radii,a=0,
in agreement with Table XIll. For the energy,is clearly
nonvanishing, confirming tha, ¢+<zq,p¢. Using Eq.(19),
0.08 we havez;, .=2.15+0.03, which is in agreement with the
previous results.
5 0.06 |
= VIIl. CONCLUSIONS
0.04 The simulations we have presented show that the repta-
a o N =800 tion dynamics is quite successful, even at theoint. The
o s N = 1600 values ofz we have found are only marginally higher than 2,
0.02 L o N = 3200 which is the best possible behavior for a dynamics that in-
TABLE Xlll. Dynamic exponentsa and b for the EER algo-
0.00 ; : : : rithm in two dimensions at thé point.
0.00 0.10 0.20 0.30 0.40

tN” R? R? R?

e m

19

FIG. 9. Dynamic scaling analysis for the EER algorithm intwo p  2.315+0.015 2.30:0.02 2.310.02 2.310.02

dimensions at the point: plots of recap2(t;N) VS tN™". Herea 5 0.0015-0.0015 0.0020.002 0.00150.0015 0.0%0.01
=0.0015,b=2.31.
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TABLE XIV. Proposal probabilityp,, and probabilityps, that
(a) b | the proposed walk is self-avoiding for lod&lo and L1 and bilocal
(b} (B22) moves. We consider noninteracting SAWs in two and three
dimensions.
d N LO, L1 B22
© @ [ [ 100 Por 0.496 0.0952
FIG. 10. Configurations of three consecutive linka: configu- Psa 0.751 0.852
ration of typel; (b) configuration of typé.; (c) configuration of type 300 Por 0.499 0.0963
S: (d) configuration of typel. 2 Psa 0.751 0.851
700 Por 0.500 0.0966
volves local and bilocal moves. Of course, for a practical Psa 0.751 0.851
implementation one may want to explore several variants 1000 Por 0.500 0.0967
that, although not changing the critical behavior, may still Psa 0.751 0.851
speed up the dynamics by a constéatge factor. First of 100 Por 0.443 0.0850
all, in practical implementations it is important to use the Dsa 0.800 0.882
second version of the reptation dynamisge Sec. 2 of the
. . 3 300 Por 0.446 0.0864
Appendi¥. Second, the B22 moves are quite rarely per-
: ; : Psa 0.798 0.878
formed and in any case much less than the kink-end/end-kink
. . . . 1000 Por 0.447 0.0869
moves. For instance, in two dimensionsGat 0, B22 (BKE)
Psa 0.798 0.877

moves are performed with probability 0.08.13. Moreover,
BKE moves appear to be quite successful in speeding up the

dynamics of the energy, that is one of the slow variables in

the presence of interactions. Therefore, in the compact ré2onds are perpendicular to the second one, and they are an-
gime an efficient dynamics can be obtained by mixing to-tiparallel to each othefU configuration. An iteration works
gether:(i) the reptation move(ji) the BKE moveyiii) purely  as follows:

local moves LO and L1. A purely local algorithm that leaves Step 1 Choose a random siteof the current walkw, 0

the correct measure invariant can be obtained from that desi=<N. If i=N, propose an L1 move and go to step 5.
scribed in Sec. 1 of the Appendix by settipf0)=1/2 in all Step 2 Determine the configuration of the subwalki
dimensions ang(22)=0. In this case, it is convenient to —1,i+2]. If i=N—1, we imagine adding a linkA w(N)
include also crankshaft moves, see Sec. 4.1 of RE8].  parallel toAw(N—1), so that the possible configurations are

Such an implementation of the EER algorithm should be th%f type L andl. Ana|ogous|y, ifi=0, we imagine add|ng a
method of choice for fixedN simulations in the compact |ink Aw(—1) parallel toAw(0).

regime. Step 3 Draw a random numbet uniformly distributed in
[0,1]. Depending on the configuration af[i—1,i+2], do
APPENDIX: THE BASIC MOVES the following:

(D) I If r>(2d—2)p(22), perform a null transition and
In this appendix, we introduce the basic moves that wehe iteration ends. Otherwise, go the next step.
use in our simulation(i) The kink-kink local/bilocal move; (2) L: If r>(2d—3)p(22)+p(0), perform a null transi-
(ii) The reptation movefjii) The kink-end/end-kink reptation tjon and the iteration ends. If (2-3)p(22)<r<(2d
move. In Ref[16] it was shown that move@ii ) are enough —3)p(22)+p(0), propose an LO move and go to step 5.
to obtain an ergodic algorithm. In two dimensions one cayiherwise go to the next step.
limit oneself to consider only moves), but this algorithm is 3 S: If,r>(2d—4)p(22)+2p(0) perform a null transi-

inefficient because of the slow motion of the endpoint. Rep—,[.&On and the iteration ends. If (- 4)p(22)<r<(2d

tation moves are never ergodic because of the possibility that )
the end points get trapped. 4)p(22)+2p(0) propose an LO move: there are two pos-

sibilities which are chosen amongst randomly; then go to
step 5. Otherwise, go to the next step.
1. Kink-kink local /bilocal move (4) U: Go to the next step.

In this section we define the kink-kink local/bilocal move ~ Step 4 Choose a second integeuniformly in the disjoint
[16]. In order to describe the algorithm it is important to intervals, —1<j<N, j#i—1i,i+1. If j=—1N make a
classify the possible configurations of three successive linkgull transition and the iteration ends. Otherwise, depending
(see Fig. 10 (1) the bonds have the same directidrcon-  on the configuration ob[i—1,+2], do the following:
figuration; (2) two consecutive bonds have the same direc- w[i—1,ji+2]is of typel, S, L:if j=0 orj=N-1, or if
tion, while the third one is perpendicular to thémconfigu-  w[j—1,j+2] is not of typeU perform a null transition and
ration); (3) the first and the third bonds are perpendicular tothe iteration ends. Otherwise, propose a B22 move, cutting
the second one, and they are either parallel or perpendiculdéine kink o[ j —1,j +2] and adding it tow[i,i +1] in one of
to each otherS configuration; (4) the first and the third the possible directionfs0]. Then, go to the next step.
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TABLE XV. Proposal probabilityp,,, probability psa that the TABLE XVII. Probability pss that the proposed walk is self-
proposed walk is self-avoiding, and probabilipye, that the pro-  avoiding for the reptation move in two and three dimensions. We
posed self-avoiding walk is accepted in the Metropolis test. Forconsider noninteracting SAWS.
local (LO and L1) and bilocal(B22) moves. We consider SAWS in

two dimensions at thé point. d N=100 N=300 N=1000
N L0, L1 822 2 0.882 0.880 0.880
3 0.938 0.937 0.937
Por 0.463 0.158
100 Psa 0.429 0.525
Pt 0.701 0.610 B22 moves respectively. As discussed in R&6], the fastest
dynamics is obtained by setting(0)=p(22)=1/2 in two
Por 0.462 0.162 dimensions, ang@(0)=1/3, p(22)=1/6 in three dimensions.
800 Psa 0.394 0.416 It is interesting to compute the probability of a successful
Putet 0.711 0.561 move. For noninteracting SAWs such a probability is the
Por 0.462 0.163 product of two terms: the probability,, that a given move is
1600 Dsa 0.389 0.399 propose_d_and the proba_bllltySA that the p_rpposed Wal_k is
Pret 0.714 0.556 self-avoiding. At theg-point one must additionally multiply
by the probability that the Metropolis test is successful. Nu-
Por 0.462 0.163 merical estimates of these probabilities are reported in Tables
3200 Psa 0.385 0.388 XIV and XV. Note that they have a very we&kdependence
Pwmet 0.716 0.553 and clearly approach a constant valueNagoes to infinity.

Using the above presented results, we can compute the
probability of a successful move. They are reported in Table
w[| -1, +2] is of typeU: according to the Conﬁgura’[ion XVI. Note that at thed point the probablllty of a null tran-

of w[j—1,j+2] (if j=0N—1 imagine adding links as be- Sition is quite large and in particular B22 moves are quite

fore) do the following: rarely performed.
(1) w[j—1,j+2] is of typel, S, L: If r<c(conf)p(22)
(note that the random numberappearing here is the same 2. Reptation move

useq in Step B propose a 82_2 move: cut the_ Kindg[ i There are two different implementations of the reptation
—1li+2] and add it on top of[j,j+1] in & possible ran- (o gjithering-snakemove. The first one, which satisfies de-
dom d|rect|on[50].,. and then go to s_tep 5. Otherwise, per-iijed balance, works as follow¥/ersion 1:
form a null transition and the iteration ends. Hexfeonf)
=(2d—-2), (2d—4), (2d—3) for conf = I, S, L, respec- Step 1 With probability 1/2 deleteos] N—1,N] and add a
tively. new link at the beginning of the walk; otherwise, delete
(2) w[j—1,j+2] is of typeU: If r<(2d—3)p(22), pro- [0,1] and add a new link at the end of the walk.
pose a B22 move: cut the kind[i—1,+2] and add it on Step 2 Check if the new walk is self-avoiding. If it is
top of w[j,j+1] in a possible random directiofs0], and  keep it, otherwise perform a null transition.
then go to step 5; if (@—3)p(22)<r<2(2d—3)p(22), Step 3 Compute the difference in energy between the old
propose a B22 move: cut the kink{j—1,j+2] and add it and the new walk and perform a Metropolis test.
on top ofw[i,i+1] in a possible random direction, and then A second version uses an additional flag that specifies
go to step 5. Otherwise, perform a null transition and thewhich of w(0) andw(N) is the “active” end point. It works
iteration ends. as follows[Version 2:
Step 5 Check for self-avoidance. If the proposed new Step 1 Delete one bond at the “active” end point and
walk is self-avoiding keep it, otherwise perform a null tran- append a new one at the opposite end of the walk.

sition. Step 2 If the new walk is self-avoiding keep it, otherwise
Step 6 Compute the difference in energy between the oldstay with the _old walk, and change the flag, switching the
and the new walk and perform a Metropolis test. active end point.

The algorithm we have presented depends on the prob- Step 3 Compute the difference in energy between the old
abilities p(0) andp(22), that are the probabilities of LO and and the new walk and perform a Metropolis test.

This algorithm does not satisfy detailed balance, but it satis-

TABLE XVI. Probability of the different moves for differer s the stationarity condition generating the correct probabil-

andd. ity distribution.
d B Lo.L1 822 Null It ig interesting to compute the prqbability_ of success of a
reptation move. In the absence of interactions it is simply
2 0 0.38 0.08 0.54 given by the probability that the proposed walk is self-
3 0 0.36 0.08 0.56 avoiding. Such a probability is reported in Table XVII. The
2 By 0.13 0.03 0.84 reptation move is quite successful, being accepted with high

probability in both two and three dimensions.
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TABLE XVIII. Probability psa that the proposed walk is self- Step 2 Propose an end-kink move with probabilityd 2

avoiding and probabilityoye that the proposed self-avoiding walk —2)p or a kink-end move with probability @—1)2p. In

is accepted in the Metropolis test. For reptation moves, we considghe first case delete the last two bonds of the walk and insert

SAWSs in two dimensions at thé point. a kink on the bondAw(i) in one of the (21— 2) possible

orientations. In the second casej#0 andw[i—1,+2] is

N=100 N=3800 N=1600 N=3200 . .
a kink, remove it and attach two bonds at the end of the walk
Psa 0.643 0.566 0.551 0.540 in one of the (21— 1)? possible ways. Otherwise, perform a
Pwet 0.697 0.663 0.658 0.654 null transition and the iteration ends.

Step 3 Check if the proposed walk is self-avoiding. If it is
. . 3 keep it, otherwise make a null transition.

At the 6 point, we must also consider the probability that  Step 4 Compute the difference in energy between the old
the proposed walk passes the MetrOpO”S test. Numerical r'e&snd the new walk and perform a Metropo"s test.
sults are reported in Table XVIII. Since the walk is more Tphe fastest dynamics is obtaingt6] for p=1/11 ind=2,
compact, psa i.s lower than _in t.he noninteracting case, al- ang p=1/29 ind=3. A slightly more efficient implementa-
though still quite large. Multiplying the two probabilities we tion is discussed in Ref16].

see that the reptation move is accepted in 35% of the cases: . .
Note that this probability is larger than the probability of a We have computed numerically the probability that a

local or bilocal B22 move, see Table XVI.

3. Kink-end/end-kink move

The kink-end/end-kink move uses BKE moviesge Fig.
3). It consists of the following steps:

Step 1 Choose a random siteof the current walk with
0<isN-2.

kink-end or an end-kink move is accepted. We find 0.140,
0.138, 0.138 foN= 100,300,700, respectively. The probabil-

ity of a null transition is, therefore, quite large, much larger
than for a kink-kink bilocal move. Note, however, that a

kink-end/end-kink move is performed more often than a B22
move and thus this type of moves should be slightly more
efficient in updating the part of the walk that is far from the

end points than B22 moves.
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