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Dynamic critical behavior of an extended reptation dynamics for self-avoiding walks
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We consider lattice self-avoiding walks and discuss the dynamic critical behavior of two dynamics that use
local and bilocal moves and generalize the usual reptation dynamics. We determine the integrated and expo-
nential autocorrelation times for several observables, perform a dynamic finite-size scaling study of the auto-
correlation functions, and compute the associated dynamic critical exponentsz. For the variables that describe
the size of the walks, in the absence of interactions we findz'2.2 in two dimensions andz'2.1 in three
dimensions. At theu point in two dimensions we havez'2.3.
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I. INTRODUCTION

The lattice self-avoiding walk~SAW! is a well-known
model for the critical behavior of a homopolymer in a so
vent @1,2# and it has also been extensively used in the st
of several properties of heteropolymers@3,4#. The earliest
simulations either used a local dynamics@5# in which, at
each step, a small part of the walk~usually 2–4 consecutive
beads! was modified, or the so-called reptation dynam
@6–9#. All these algorithms are, however, nonergod
@7,8,10–12# and only a limited fraction of the phase space
visited. Note that, contrary to some claims in the literatu
the deviations are sizable even for very short walks if one
interested in low-temperature properties, i.e., polymers in
compact phase or heteropolymers near the folding temp
ture @13–15#. For instance—see footnote 4 in Ref.@16#—if
one uses the Verdier-Stockmayer algorithm@5# in two dimen-
sions, one does not sample 3.2%, 1.4%, 5% of the m
compact configurations forN511,13,15. These ergodicit
problems can be solved by using a different ensemble@17–
20#, chain-growth algorithms@21–24#, or nonlocal algo-
rithms @25–30#. However, in the presence of interaction
nonlocal algorithms become inefficient since nonlocal mo
generate new walks with large energy differences and t
they will be rejected making the dynamics very slow. Cha
growth algorithms may work much better but, in order
make them efficient, one must sample a different probab
distribution, and thus one may be worried by the introduc
bias.

In this paper, we wish to discuss a family of dynamics th
use bilocal moves and generalize the reptation dynamic
bilocal move alters at the same time two disjoint sm
groups of consecutive sites of the walk that may be very
away. Since a small number of beads is changed at each
these algorithms should be efficient in the presence of in
actions, and thus they can be used in the study of the
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lapsed phase and of the folding of heteropolymers. Sim
moves were introduced in Refs.@31–34#.

The ergodicity properties of these algorithms have be
discussed in Ref.@16#. Here, we will study the dynamic
properties of two different implementations. The first on
the extended end-end reptation~EER! algorithm, is obtained
by performing at the same time reptation moves and bilo
kink-kink moves. Such an algorithm is quite efficient. In th
absence of interactions, the autocorrelation time for qua
ties that measure the size of the walk—for instance, the e
to-end distance or the radius of gyration—scales asNz with
z'2.2 in two dimensions andz'2.1 in three dimensions
The behavior of the energy~number of nearest-neighbor con
tacts among nonconsecutive links! is even faster, withz
'1.7 in both dimensions. We have also tested the beha
of the algorithm at theu point in two dimensions. We find
that the critical behavior is only marginally worse, withz
'2.3, both for metric quantities and for the energy. We ha
also studied a different version, the extended kink-end re
tion ~KER! algorithm, in which the reptation moves are r
placed by kink-end moves, i.e., by moves in which a kink
cleaved and two additional links are attached at the end
the walk and vice versa. This version is much slower, w
z'2.9 for quantities that measure the polymer size. Clea
reptation moves are essential to obtain a fast dynamics.

The paper is organized as follows. In Sec. II, we defi
the model and the observables whose critical behavior
be studied. In Sec. III, we define the basic moves and the
dynamics. Specific implementation details are reported in
Appendix. In Sec. IV, we define the autocorrelation time
the dynamic critical exponents, and the methods we us
compute them. In Sec. V and Sec. VI, we discuss the crit
behavior of the EER and of the KER algorithms in the a
sence of interactions, while in Sec. VII we discuss the
havior of the EER algorithm in two dimensions at theu
point. Conclusions are presented in Sec. VIII.

II. DEFINITIONS

In this paper, we consider SAWs with a fixed number
stepsN and free end points on a hypercubic latticeZd. An
©2002 The American Physical Society06-1
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CARACCIOLO, PAPINUTTO, AND PELISSETTO PHYSICAL REVIEW E65 031106
N-step SAWv is a set ofN11 lattice sitesv0 , . . . ,vN ,
such thatv i and v i 11 are lattice nearest neighbors, andv i
Þv j . By translation invariance we may fixv0 to be the
origin.

We consider several observables that measure the siz
an N step SAW:

The mean square end-to-end distance

Re
2[~vN2v0!2. ~1!

The mean square radius of gyration

Rg
2[

1

N11 (
i 50

N S v i2
1

N11 (
k50

N

vkD 2

5
1

2~N11!2 (
i , j 50

N

~v i2v j !
2. ~2!

The mean square monomer distance from an end poi

Rm
2 [

1

N11 (
i 50

N

~v i2v0!2. ~3!

Moreover, for each SAW, we define the number of neare
neighbor contactsE. It is defined as follows. For everyiÞ j
we define

ci j [H 1 if uv i2v j u51,

0 otherwise.
~4!

Then,

E[2 (
i 50

N22

(
j 5 i 12

N

ci j . ~5!

Note that we do not include here the trivial contacts betw
consecutive walk sites.

We give each SAWv a weightW(b) depending on the
inverse temperatureb[1/kT,

W~b![
1

ZN
e2bE, ~6!

where ZN is the partition sum. The mean values^Re
2&N ,

^Rg
2&N , and ^Rm

2 &N have the asymptotic behaviorN2n as N
→`, wheren is a critical exponent, which is independent
the microscopic details of the lattice model but depends
b. For b,bu ~good-solvent regime! the SAW is swollen:
n53/4 in two dimensions and@35# n50.58758(7) in three
dimensions~see Ref.@36# for a review of estimates ofn in
three dimensions!. For b.bu the SAW is compact withn
51/d. For the very specific valueb5bu (u point!,

n5H 4

7
, d52 ~Ref. @37# !,

1

2
3 ln, d53 ~Refs.@1,38– 41# !.

~7!
03110
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The critical valuebu depends on the model, on the lattic
type, and on all microscopic details. For the model we c
sider here we have: on the square latticebu50.665(2)~Ref.
@42#! andbu50.667(1) ~Ref. @43#!; on the cubic latticebu
50.276(6) ~Ref. @44#! andbu50.2690(2)~Ref. @23#!.

III. ALGORITHMS

For the simulation of weakly interacting walks, i.e., fo
b,bu , there exist powerful nonlocal algorithms@27,30#.
However, these algorithms cannot be used in confin
geometries—they are not ergodic—and are very ineffici
in the presence of strong interactions. Indeed, in these c
ditions nonlocal moves are rarely accepted. In this paper,
consider two algorithms that use local and bilocal mov
@16#. A local move is the one that alters only a few consec
tive beads of the SAW, leaving the other sites unchanged
bilocal move is instead the one that alters two disjoint sm
groups of consecutive sites of the walk; these two gro
may, in general, be very far from each other.

In our study we consider two types of local moves~see
Fig. 1!:

~L0! One-bead flips in which oneinternal bead @i.e.,
v( i ), 1< i<N21# only is moved.

~L1! End-bond rotations in which the last step of the wa
is rotated.

We also introduce several types of bilocal moves:
~B22! Kink-transport moves in which a kink is cleave

from the walk and attached at a pair of neighboring si
somewhere else along the walk~see Fig. 2!; note that the

FIG. 1. All one-bead moves:~a! One-bead flip.~b! 90° end-
bond rotation.~c! 180° end-bond rotation.

FIG. 2. The kink-transport move. A kink has been cleaved fro
AB and attached at CD. Note that the new kink is permitted
occupy one or both of the sites abandoned by the old kink.
6-2
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DYNAMIC CRITICAL BEHAVIOR OF AN EXTENDED . . . PHYSICAL REVIEW E65 031106
new kink is allowed to occupy one or both of the sites ab
doned by the old kink.

~BKE! Kink-end and end-kink reptation moves~see Fig.
3!. In the kink-end reptation move a kink is deleted at o
location along the walk and two new bonds are appende
arbitrary directions at the free end point of the walk. On t
contrary, an end-kink reptation move is characterized by
letion of two bonds from the end of the walk and insertion
a kink, in arbitrary orientation, at some location along t
walk.

~BEE! Reptation move in which one bond is deleted fro
one end of the walk and a new bond is appended in arbit
direction at the other end.

Using these elementary moves we introduce three dif
ent updates that leave invariant the Gibbs measure~6!. They
are described in detail in the Appendix. We will then co
sider two algorithms:~a! extended end-end reptation~EER!
algorithm;~b! extended kink-end reptation~KER! algorithm.

The EER algorithm consists in combining with nonze
probability the reptation move and the kink-kink loca
bilocal move, see Sec. 1 and Sec. 2 of the Appendix for
implementation details. More precisely, with probabilityp
one performs a reptation move, and with probability 12p a
kink-kink local/bilocal move. The KER algorithm work
analogously: instead of the reptation moves, we use the k
end/end-kink BKE moves. Both algorithms are known to
ergodic in two dimensions, while ford53 ergodicity has
been proved only for the KER algorithm@16#. For the EER
algorithm ergodicity is still an open problem. The probabil
p is not fixed, and can be tuned to obtain the fastest dyn
ics. However, it should not have any influence on the
namic critical behavior, i.e., on the dynamic critical exp
nents. For this reason we have not performed a system
study of the dependence of the numerical results onp and we
have simply setp50.50 in most of our simulations.

FIG. 3. The kink-end reptation (→) and end-kink reptation
(←) moves. In (→), a kink has been cleaved from AB and tw
new steps have been attached at the end marked X. Note tha
new end steps are permitted to occupy one or both of the s
abandoned by the kink.
03110
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In order to have a fast and efficient implementation, it
important that local and bilocal moves are performed in
CPU time of order one, i.e., constant asN→`. This can be
obtained only with a careful choice of the data structu
used to store the walk coordinates. For local and end-
reptation moves it is sufficient to store the walk coordina
as a circular list in which the coordinates of the beads
stored sequentially. However, such a data structure is
convenient for B22 and BKE moves, since in this case ins
tion and deletion of a single point requires a time of orderN.
The problem is solved@45# by storing the coordinates in
contiguously allocated doubly linked linear list. The coordi-
nates are stored contiguously but not in any particular or
In order to find the bead that follows and precedes a gi
one, one keeps two arrays of pointers that give the loca
in the coordinate list of the preceding and of the success
walk bead. With this type of data structure, insertions a
deletions take a time of order one. An efficient implemen
tion requires also the ability to perform the self-avoidan
check in a time of order one. This may be obtained by us
a bit table—however, this is only possible for sho
walks—or a hash table. In this second case, one mus
careful to use a hashing method that allows to insert
delete a single point in a time of order one. A very efficie
method is described in Ref.@46#.

IV. DYNAMIC BEHAVIOR

In order to determine the efficiency of the dynamics, w
study the critical behavior of the autocorrelation times. Qu
generally, given an observableA, we define the unnormalized
autocorrelation function

CAA~ t ![^AsAs1t&2^A&2, ~8!

and its normalized counterpart,

rAA[CAA~ t !/CAA~0!, ~9!

where t is the dynamics ‘‘time.’’ Typically,rAA(t) decays
exponentially, i.e.,rAA(t);e2utu/t, for large utu. We define
the exponentialautocorrelation time

texp,A5 lim sup
utu→1`

utu
2 lnurAA~ t !u

, ~10!

and theintegratedautocorrelation time

the
es
ter.’’
TABLE I. Exponential autocorrelation times for the EER algorithm in two and three dimensions. ‘‘i
is the number of iterations.

d N iter. texp,R
g
2 texp,R

e
2 texp,R

m
2 texp,E

100 5.7731010 3230620 3062624 3190616 3078640
2 300 5.3831011 436006900 4730061500 431406760 3560061260

1000 6.9031011 710400642000 859600646000 745000636000 448000630000

100 4.3631010 2980640 3020630 2968630 2840660
3 300 4.4231011 326406840 347006900 329806840 274806800

1000 5.2031011 370400622000 374800624000 368000622000 300800616000
6-3
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CARACCIOLO, PAPINUTTO, AND PELISSETTO PHYSICAL REVIEW E65 031106
t int,A5
1

2 (
s52`

1`

rAA~s!5
1

2
1(

s51

1`

rAA~s!. ~11!

The factor 1/2 is inserted so thatt int,A'texp,A if rAA(t)
5e2utu/texp,A with texp,A@1.

In order to estimatetexp,A , we will proceed as follows. If
r̂AA(t) is the normalized autocorrelation function estimat
from the data, we define an effective exponent

t̂exp,A~ t;s![sF lnS r̂AA~ t !

r̂AA~ t1s!
D G21

, ~12!

wheres is some fixed number. This quantity should becom
independent oft ast→`. In practice, we look for a region in
which the estimates are sufficiently stable witht and then
take the value oft̂exp,A(t;s) in this region as our estimate o
texp,A . In order to apply the method we should also choo
the parameters. It should be neither too small, i.e.,s
!texp,A , otherwiser̂AA(t)'r̂AA(t1s), nor too large, i.e.,
s@texp,A , otherwise the error onr̂AA(t1s) is large. In our
study, we have always fixeds self-consistently, by takings
'texp,A /k with k'10–20.

In order to estimatet int,A , we use the self-consistent win
dowing method proposed in Ref.@10#. We define our esti-
mate as

t̂ int,A5
1

2 (
t52M

M

r̂AA~ t !, ~13!

whereM is the smallest integer that satisfiesM>ct̂ int,A and
c is a fixed constant. The variance oft̂ int,A is given by

var~ t̂ int,A!'
2~2M11!

n
t̂ int,A

2 , ~14!

wheren is the number of Monte Carlo iterations and we ha
made the approximationt int,A!M!n. The method provides
quite accurate estimates oft̂ int,A as long asc is chosen so tha
M is a few timestexp,A . There are cases in whicht int,A
!texp,A , so that the previous condition is difficult to satisf
In this case, a successfulad hocrecipe was proposed by L
et al. @47# for the pivot algorithm. They noted that, whenA is
one of the radii,rAA(t)'1/tq in the intermediate region
t int,A!t&texp,A , with q'1 –1.2. Thus, they extrapolate
03110
e

e

rAA(t) proportionally to 1/t for t.M , @i.e., set r̂AA(t)
5M r̂AA(M )/t for t.M #, and then used this expression
compute the contribution tot int,A from the regionM,t
,texp,A . This gives the modified estimate

t̃ int,A5
1

2 (
t52M

1M

r̂AA~ t !1M r̂AA~M !lnS texp,A

M D . ~15!

In general, the autocorrelation times diverge asN→`. We
can thus define two dynamic critical exponentszexp,A and
zint,A by

t int,A;Nzint,A,

texp,A;Nzexp,A. ~16!

The dynamic critical exponents can also be obtained
requiring the autocorrelation function to obey a dynam
scaling law of the form@45,48,49#

rAA~ t;N!'utu2aFAA~ tN2b!'N2abGAA~ tN2b!, ~17!

FIG. 4. Effective exponentt̂exp,R
g
2(t;s) for the EER algorithm.

Here d52, N5300, s52000. The horizontal line corresponds
our final estimatetexp,R

g
2543 600 and the dashed lines to6 one

error bar~900!.
ing
TABLE II. Dynamic exponentzexp for the EER algorithm in two and three dimensions, obtained by fitt
texp5BNzexp. The number of degrees of freedom of the fit is 1.

d texp,R
g
2 texp,R

e
2 texp,R

m
2 texp,E

zexp 2.3760.02 2.4660.02 2.3660.02 2.1860.02
2 B 0.061060.0048 0.037660.0032 0.058660.0030 0.13360.013

x2 1.18 1.03 0.52 2.33

zexp 2.1060.03 2.1160.04 2.1060.03 2.0460.03
3 B 0.19660.032 0.18060.028 0.19060.030 0.24260.028

x2 1.13 1.90 1.31 1.57
6-4
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TABLE III. Integrated autocorrelation times for the EER algorithm in two and three dimensions.

d N t int,R
g
2 t int,R

e
2 t int,R

m
2 t int,E

100 3113.665.6 2209.263.4 2124.463.2 861.6460.82
2 300 36000672 24250640 23764638 5596.464.4

1000 52288063520 33722061820 33460061800 39224672

100 2729.065.2 1761.262.8 1780.062.8 925.461.0
3 300 27092652 16772626 17162626 6035.865.4

1000 33290062100 1991606960 20510061000 42954696
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valid in the limit N→`, utu→`, with tN2b fixed. Here,
a,b.0 are dynamic critical exponents andFAA andGAA are
suitable scaling functions. IfFAA(x) is continuous, strictly
positive, and rapidly decaying—e.g., exponentially—asuxu
→`, then, it is not hard to see that

zexp,A5b, ~18!

zint,A5~12a!b ~ if a,1!. ~19!

The exponentsa andb can be determined by requiring th
collapse onto a single curve of the autocorrelation functi
corresponding to different values ofN. Then, using the pre
vious formulas, one can determinezexp,A andzint,A . The ad-
vantage of this method is in its bypassing the problem
determiningtexp,A andt int,A , but it is quite difficult to assess
the errors, since the optimal values are determined visua

V. THE EER DYNAMICS IN TWO AND THREE
DIMENSIONS

We performed an extensive Monte Carlo simulation
noninteracting (b50) SAWs on the square lattice,d52,
and on the cubic lattice,d53, using the EER algorithm. We
set p50.5 and used the first version of the reptation mo
see Sec. B of the Appendix. We considered only three va
of N, N5100,300,1000, but for each of them we collected
very large statistics, see Table I. We measured^Rg

2&N ,
^Re

2&N , ^Rm
2 &N , and the energyEN , i.e., the number of

nearest-neighbor contacts. We compared the static resul
our simulations with those of Liet al. @47#, finding good
agreement.

First of all, we measured the exponential autocorrelat
times. As an example, in Fig. 4 we report the effective e
03110
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ponent t̂exp,R
g
2(t;s) for N5300, d52, s52000. It increases

with t and becomes constant within error bars fort
*106 000. We have taken our estimate att'130 000
'3texp,R

g
2. The same analysis has been done for all obse

ables and all values ofN. The results are reported in Table
We have determined the dynamic exponentzexp,A by fit-

ting the results of Table I with the ansatz

texp,A5BANzexp,A. ~20!

The results are reported in Table II. Since we only have th
values of N, we cannot study the effect of corrections
scaling and thus we cannot determine the systematic erro
our results. However, an indication can be obtained by co
paring the results for the three radii. Indeed, one expe
these three observables to have the same dynamic expo
In two dimensions,zexp,R

e
2 differs significantly from the esti-

mates for the other radii, indicating the presence of la
corrections to scaling. Such conclusion is confirmed by
scaling analysis that will be reported below: as we shall s
the results of Table II in two dimensions are effective exp
nents that are expected to decrease as larger values ofN are
included in the fit. Of course, it is possible that alsozexp,E is
affected by large corrections to scaling. However, the sca
analysis confirms the result forzexp,E , thus showing that the
scaling corrections are important for the radii only.

In three dimensions, there is no evidence of large sca
corrections. Indeed, the exponentszexp for the three radii
agree within error bars. The dynamic exponent for the ene
is lower than that for the radii. However, the difference
small and it is not clear if it is real or just the result o
neglected corrections to scaling.
ing
TABLE IV. Dynamic exponentzint for the EER algorithm in two and three dimensions, obtained by fitt
t int5BNzint. The number of degrees of freedom of the fit is 1.

d t int,R
g
2 t int,R

e
2 t int,R

m
2 t int,E

zint 2.22760.002 2.18260.002 2.19860.002 1.67360.001
2 B 0.110060.0010 0.095660.0008 0.085660.0008 0.39260.002

x2 0.660 1.04 0.054 1470

zint 2.08860.002 2.05260.002 2.06260.002 1.68160.001
3 B 0.182060.0020 0.138660.0012 0.133860.0010 0.39260.002

x2 0.804 0.625 0.191 851
6-5
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TABLE V. Dynamic exponentsa andb for the EER algorithm in two and three dimensions.

d Rg
2 Re

2 Rm
2 E

2 b 2.2160.02 2.2060.02 2.2260.02 2.1460.02
a 0.001060.0010 0.002560.0020 0.00260.002 0.28560.025

3 b 2.08560.015 2.06860.015 2.08560.015 2.03060.025
a 0.001260.0010 0.002560.0025 0.001560.0015 0.21060.020
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Then, we have computed the integrated autocorrela
times by using the self-consistent windowing method w
c515, cf. Eq.~13!. The results are reported in Table III.

For the radii,texp,R2;1–2t int,R2 and thus the choicec
515 should be rather conservative. For the energy,c515
corresponds to 1.3texp,E&M&4texp,E in two dimensions and
to 2texp,E&M&5texp,E in three dimensions for our values o
N @M is the cutoff defined in Eq.~13!#. Such values ofM can
give rise, at least forN51000, to a systematic underestima
of t int,E . For our choice ofc and for N51000, rEE(M )
'(7.261.5)1024 and (4.961.0)1024 in two and three di-
mensions, respectively. Therefore, assuming a pure expo
tial behavior fort.M , the neglected contribution should b
of order 320660 in d52 and 150630 in d53. The correc-
tion is quite small, but larger than the quoted error bars:
correct errors are at least larger by a factor of 5~2! in two
~three! dimensions.

The results fort int,A have been fitted with the ansatz

t int,A5BANzint,A. ~21!

The results are reported in Table IV.
The error bars are purely statistical and, as in the cas

zexp, large systematic errors may be present. We expect
quantities that measure the walk size to have the same
namic exponentzint . Thus, both in two and three dimension
the reported errors are largely underestimated. More con
vative estimates are

zint,R252.2060.03, d52,

zint,R252.0760.02 d53. ~22!
03110
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The fit for the energy has a very largex2. There are two
reasons for this. First, the statistical errors are undere
mated, as we already discussed. Second, there may
large—compared to the tiny statistical errors—corrections
scaling. For these reasons, the errors quoted in Table IV
zint,E should not be taken seriously. A more realistic estim
is obtained by multiplying the errors byAx2, which gives an
error of60.04 on the exponent in both two and three dime
sions. Such error is more realistic and indeed is close to
error we quoted for the radii, cf. Eq.~22!.

The dynamic critical exponents can also be determined
analyzing the scaling behavior of the autocorrelation fu
tion, see Eq.~17!, i.e., by determininga and b so that
Nabr̂AA(t) is a universal function oftN2b, independent ofN.
In Table V, we report the values ofa and b for which a
collapse of the autocorrelation functions is observed. In F
5, we show the corresponding plots forRg

2 and E in two
dimensions.

For the energy we observe a very good collapse, while
the radii the scaling behavior deteriorates astN2b increases.
Since the vertical scale changes by several orders of ma
tude, the deviations are somewhat difficult to observe a
this makes difficult to set the errors ona and b. For this
purpose, we found more useful to consider, instead
Nabr̂AA(t), the quantity

tscal,A~ t;N!52
tN2b

ln„Nabr̂AA~ t !…
~23!

that is also a universal function oftN2b in the scaling limit
and that scales astexp,AN2b for tN2b→`.
FIG. 5. Dynamic scaling analysis for the EER algorithm in two dimensions: plots of ln@Nabr̂AA(t)# vs tN2b. Left frame: A5Rg
2 , a

50.001,b52.21; right frame:A5E, a50.285,b52.14.
6-6



DYNAMIC CRITICAL BEHAVIOR OF AN EXTENDED . . . PHYSICAL REVIEW E65 031106
FIG. 6. Dynamic scaling analysis for the EER algorithm in two dimensions: plots oftscal,A(t;N) vs tN2b. Left frame: A5Rg
2 , a

50.001,b52.21; right frame:A5E, a50.285,b52.14.
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In Fig. 6, we report the quantitytscal,A(t;N) for Rg
2 andE.

The energy shows a very good scaling behavior while
scaling is quite poor forRg

2 , although it improves asN in-
creases: the data forN5100 and N5300 overlap up to
tN2b'0.05, while the data forN5300 andN51000 overlap
up to tN2b'0.09.

In three dimensions, all observables show a very go
scaling behavior, as it can be seen from Fig. 7. In all ca
the results for the three values ofN fall onto a single curve.

From the results of Table V we can compute the ex
nentszexp andzint , cf. Eqs.~18! and~19!, and compare them
with the previous results. In three dimensions, the estim
of zexp obtained from the scaling analysis are in perfe
agreement with those of Table II. In two dimensions inste
only zexp,E is compatible with the results of Table II. Th
estimates ofzexp for the radii obtained from the scalin
analysis are significantly lower than those obtained from
ting the autocorrelation times. The origin of the discrepan
can be understood from Fig. 6. The exponential time is
termined by the large-t behavior ofrAA(t) and in practice by
the behavior in the region in whicht'3texp,R2, see Fig. 4,
which corresponds approximately totN2b'0.44. But in this
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region there is no scaling, and thus the correspondingtexp,R2

do not scale asNzexp,R2. For this reason, we believe the es
mates of Table II to be grossly in error. Note also that t
estimate we obtain in the scaling analysis,zexp,R2'2.21, is
compatible withzexp,R2'zint,R2, a relation that is expected t
be true, since the radii are strongly coupled to the slow
modes of the dynamics.

Then, we can computezint,A . For the radii, we always
havea'0, so thatzint,R2'zexp,R2 as expected. This confirm
the results of Table IV. For the energy, we have insteada
Þ0. Using Eq.~19!, we obtain

zint,E51.5360.06, d52, ~24!

zint,E51.6060.05, d53. ~25!

These results are in reasonable agreement with those
ported in Table IV if one takes into account that, as we d
cussed, the error on those results is of order 0.04.

In conclusion, putting the results of the different analys
together, we obtain in two dimensions:
FIG. 7. Dynamic scaling analysis for the EER algorithm in three dimensions: plots oftscal,A(t;N) vs tN2b. Left frame: A5Rg
2 , a

50.0012,b52.085; right frame:A5E, a50.210,b52.03.
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TABLE VI. Exponential autocorrelation times for the KER algorithm in two and three dimensions. ‘‘it
is the number of iterations.

N iter. texp,R
g
2 texp,R

e
2 texp,R

m
2

100 2.431011 376006160 380006160 386206100
300 8.831011 91800068000 95800068000 97200068000
700 1.931012 114750006315000 116100006315000 112500006225000
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zexp,R25zint,R252.260.1,

zexp,E52.1560.05,

zint,E51.6060.10. ~26!

In three dimensions we have

zexp,R25zint,R252.0760.05,

zexp,E52.0560.05,

zint,E51.6560.05. ~27!

The errors are such to include the results of all analyses
Note thatzint,E,zexp,E for the EER dynamics. This may b

understood as follows. The energy fluctuations are es
tially due to two causes. First, there are fluctuations due
local changes of the walk. These fluctuations are fast s
these are due to local and bilocal moves. Then, there
fluctuations due to changes of the global structure of
walk. Indeed, there are contributions to the energy that
due to groups of monomers that are far apart along the w
but that are near in position space. Such contributions v
slowly, typically astexp,R2, and are the origin of the fact tha
zexp,E'zexp,R2. However, these contributions are very sma
and thus give rise to tiny fluctuations that are negligib
when considering integrated quantities. Therefore,zint,E
,zexp,E .
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All results we have discussed up to now refer to simu
tions with p50.5 and with the first version of the reptatio
move. These choices are of no relevance for the critical
ponents, but they have of course a strong influence on
amplitudes. We have thus tried to see the changes in
dynamics due to a variation ofp and to a change of the
reptation move. To check the role ofp, we have performed
simulations withp50.1 andp50.9 with walks of lengthN
5100 in two dimensions. We find: forp50.9, t int,R

e
2

52184632 andt int,E51200613; for p50.1, t int,R
e
258740

6260 andt int,E51181613. This should be compared wit
the results of Table III,t int,R

e
2'3110 andt int,E'862. Thus,

by increasingp, there is a significant speed up of the dyna
ics of the radii—this should be expected, since reptat
moves are essentially the only ones that change the pos
of the end point and are thus those that control the slow
modes of the dynamics. Thus, for noninteracting SAWs,
which the energy is not an interesting observable,p close to
one—but notp51, otherwise ergodicity is lost—is a goo
choice for a fast dynamics. On the other hand, the dynam
of the energy becomes slower both forp50.1 and forp
50.9. The fact thatt int,E is larger forp50.9 is easy to un-
derstand. Indeed, by increasingp we decrease the probabilit
of performing L0 and B22 moves that should be the m
important ones for the energy. However, it is clear that r
tation moves are also relevant for the energy, since fop
50.1, t int,E is also larger. Apparently, for smallp the relevant
quantity for the dynamics of the energy is the number
FIG. 8. Autocorrelation functionr̂EE(t) for the KER algorithm in two dimensions. HereN5300. The straight line in the right frame
corresponds toBt2a, B55100, a51.29.
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DYNAMIC CRITICAL BEHAVIOR OF AN EXTENDED . . . PHYSICAL REVIEW E65 031106
successful moves, irrespective of the type. Indeed, using
results of Sec. 1 and Sec. 2 of the Appendix we findt int,E
'600 successful iterations both forp50.5 andp50.1.

We have also tested the second version of the repta
algorithm, see Sec. 2 of the Appendix. For random wa
this implementation givest;N compared tot;N2 of the
first version. For the SAW, the two versions are expected
have the same critical exponents, but the second one sh
be faster. We have performed a simulation withp50.5 in
two dimensions, findingt int,R

e
2551064 and t int,E5299.8

61.6. These estimates are sensibly smaller than those
ported in Table III. ForRe

2 the dynamics is faster by a facto
of 6, and forE by a factor of 3. Clearly, the second imple
mentation is the most efficient one and all our simulatio
should have used it. Unfortunately, we thought of this sec
version only when all simulations were completed.

VI. THE KER DYNAMICS IN TWO DIMENSIONS

The second dynamics we have analyzed is the KER a
rithm in which end-end reptation moves BEE are replaced
kink-end reptation moves BKE. It turns out that this dyna
ics is much slower than the EER one, and thus we h
limited our analysis to shorter walks,N5100,300,700, to
two dimensions, and to noninteracting SAWs, i.e.b50. We
set p50.5. Again, we measured three radii and the ene
The static results agree with those obtained by using the E
dynamics and discussed in the preceding section and with
results of Ref.@47#.

As in the preceding section, we have first determined
exponential autocorrelation times by studying the large-ti
behavior of the effective exponentst̂exp,A(t;s), see Sec. IV.
The results for the radii are reported in Table VI. We ha

TABLE VII. Dynamic exponentzexp for the KER algorithm in
two and three dimensions, obtained by fittingtexp5BNzexp. The
number of degrees of freedom of the fit is 1.

texp,R
g
2 texp,R

e
2 texp,R

m
2

zexp 2.9260.01 2.9460.01 2.9360.01
B 0.05460.002 0.05060.002 0.05460.002
x2 3.77 0.034 2.46
03110
he

n
,

o
uld

re-

s
d

o-
y
-
e

y.
R
he

e
e

e

not been able to determine the exponential autocorrela
time for the energyE. Indeed, for the values oft for which
rEE(t) is not zero within statistical errors,rEE(t) has a
power-law behavior, i.e.,rEE(t);t2a, with a'1 –1.3. This
can clearly be seen from Fig. 8 where we reportrEE(t) for
N5300.

The results for the exponential autocorrelation times
fitted with the ansatz~20!, obtaining the results reported i
Table VII. As before, we cannot perform a systematic ana
sis of the scaling corrections. However, it is important
notice that the estimates for the three radii agree within e
bars. This confirms the correctness of the quoted error b
and gives the final estimate

zexp,R252.9360.02. ~28!

This estimate is significantly higher than that for the EE
dynamics. The origin of such a large difference is uncle
since it is difficult to see any difference between BEE a
BKE moves. Naively, one would have expected a BKE mo
to be equivalent to two BEE moves together with a B
move. Since all moves have a finite probability of success
N→`, see Appendix, one would have expected a differe
by a constant factor, and thus the same critical expone
Such a naive expectation is not true, since the exponents
clearly different.

We have then determined the integrated autocorrela
times. For the radii we have used the self-consistent wind
ing method of Sec. IV, usingc515. The results are reporte
in Table VIII. Sincetexp,R2;3tint,R2, the choicec515 should
be enough to avoid systematic errors. Instead, the autoco
lation function of the energy decreases rapidly and it ha
very long tail. In this case, we have chosen a much lar
valus ofc, c5200, obtaining the results that are reported
Table VIII ast int,E(nt). In spite ofc being such a large num
ber, the cutoff valueM, cf. Eq. ~13!, is still well within the
region in which the function decays as a power law. F
instance, forN5300, M5670 000 (lnM'13.4) andr(M )
'3.431024, see Fig. 8. This should be expected since
cutoff M satisfies M&texp,R2'106. More precisely, M
'3.3texp,R2, M'0.7texp,R2, and M'0.14texp,R2 approxi-
mately for N5100,300,700. Therefore, we expect a siza
contribution from the tail of the autocorrelation function,
least for N5300,700. To take it into account, we use E
tical
he
TABLE VIII. KER algorithm in two dimensions: integrated autocorrelation times and dynamic cri
exponentszint , obtained by fittingt int5BNzint. The number of degrees of freedom of the fit is 1. For t
energyE, we report two estimates:~nt! is obtained by using the self-consistent windowing method withc
5200, while~wt! is the result obtained including the tail contribution in the manner of Liet al. ~Ref. @47#!.

N t int,R
g
2 t int,R

e
2 t int,R

m
2 t int,E(nt) t int,E(wt)

100 15632630 20974648 27528672 847.560.4 847.560.4
300 34103061640 46270062600 64850064300 3402.661.6 348464
700 3906500643800 5325000670000 79420006127000 9269.065.1 10948690

zint 2.82060.005 2.83060.004 2.89060.006 1.233060.0004 1.28960.0011
B 0.036060.0007 0.046460.0010 0.045860.0012 2.92060.006 0.80860.005
x2 18.5 11.8 11.8 4197 41.7
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CARACCIOLO, PAPINUTTO, AND PELISSETTO PHYSICAL REVIEW E65 031106
~15!, where fortexp,E we take the averagetexp,R2 of the radii.
For N5300 the correction is of 2.5%@2.4% if we approxi-
mate rEE(t)'Bt21.3 as obtained from the fit# and for N
5700 of 20.3%@18.1% if we approximaterEE(t)'Bt21.1 as
obtained from the fit#. The results are reported in Table VI
ast int,E(wt). The reported error is obtained by summing 20
of the contribution of the tail to the original error. This is a
ad hocprescription which can be shown to work reasona
in the exactly soluble case of the pivot algorithm for t
random walk.

The results for the autocorrelation times have been fi
with the ansatz~21! in order to obtainzint . For the radii, the
quality of the fits is quite poor, with ax2 of approximately
10–20. Moreover, the estimates do not agree within e
bars. There are, therefore, corrections to scaling larger
the very tiny statistical errors. By requiringzint,R2 to coincide
for these three quantities, we obtain finally

zint,R252.8560.06, ~29!

which includes all estimates and is compatible with the
pectationzint,R25zexp,R2.

Fits of t int,E are characterized by a very largex2 and give
zint,E'1.2–1.3, much smaller thanzint,R2. As in the EER al-
gorithm, the dynamics of the energy is much faster than
of the radii. Note thatzint,E is also significantly lower that the
corresponding exponent for the EER algorithm. Again, it
quite difficult to understand intuitively why this happens.

The results reported above are confirmed by a sca
analysis using Eq.~17!. The results for the radii are reporte
in Table IX. The exponenta is compatible with zero and
zexp,R25b52.9160.03, in agreement with the estimate~28!.

SincerEE(t);Bt2a for the values oft we can investigate
we cannot determinea andb independently. Thus, we hav
assumedzexp,E5zexp,R2 and then usedb52.9360.04, cf. Eq.
~28!—to be conservative, we have doubled the error. Co
spondingly, we obtaina50.67060.015 and zint,E50.97
60.05, which is somewhat lower than the estimates of Ta
VIII. One may think that this is due to our assumptio

TABLE IX. Dynamic exponentsa andb for the KER algorithm
in two dimensions. For the energy, we have fixedb52.9360.04
and determined the correspondinga.

Rg
2 Re

2 Rm
2 E

b 2.8960.03 2.9260.02 2.9260.02 @2.9360.04#
a 0.01560.015 0.02060.015 0.01560.010 0.67060.015
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zexp,E5zexp,R2, while there is some evidence from the analy
of the EER dynamics thatzexp,E,zexp,R2. However, this does
not explain the difference, since ifzexp,E decreases, alsozint,E
decreases. In order to obtainzint,E51.3, one should take
zexp,E5b53.35, which is much too large. Therefore, the d
ference should be taken as an indication of the scaling
rections.

In conclusion, the KER dynamics has a different critic
behavior with respect to the EER dynamics. For the criti
exponents we have

zexp,R25zint,R252.9060.05, ~30!

zint,E51.060.3. ~31!

VII. THE EER DYNAMICS AT THE u POINT IN TWO
DIMENSIONS

Bilocal algorithms are of interest for applications in co
strained geometries and in the presence of strong interac
where nonlocal algorithms are inefficient.

In this section, we study the dynamic behavior of the EE
algorithm at theu point in two dimensions, by settingb
5bu50.665—we have used the estimate of Ref.@42#. Here,
we have studied longer walks than before,N
5100,800,1600,3200, with large statistics, see Table X.

We have performed the same analyses we have prese
in the preceding sections. First, we determined the expon
tial autocorrelation times, see Table X, and the expone
zexp,A , see Table XI. Clearly, the statistical errors are t
small. Indeed, we expectzexp,A to be the same for al
observables—including the energy, that should be stron
coupled to the slowest modes at theu point—and this does
not happen with the quoted error bars. By direct compari
of all estimates, we obtain the more conservative result

zexp,E5zexp,R252.3060.03, ~32!

where the error is such to include all estimates.

TABLE XI. Dynamic exponentzexp for the EER algorithm in
two dimensions at theu point, obtained by fittingtexp5BNzexp. The
number of degrees of freedom of the fit is 2.

texp,R
g
2 texp,R

e
2 texp,R

m
2 texp,E

zexp 2.31860.004 2.27560.003 2.30060.004 2.31360.004
B 0.12660.006 0.14860.004 0.12860.005 0.11660.006
x2 2.01 3.64 1.24 0.78
TABLE X. Exponential autocorrelation times for the EER algorithm in two dimensions at theu point.
‘‘iter.’’ is the number of iterations.

N iter. texp,R
g
2 texp,R

e
2 texp,R

m
2 texp,E

100 5.8431010 5120670 5220660 5170640 4856644
800 6.2831011 609600615000 606000610000 62000068000 59420069000
1600 1.8131012 3165000622000 2840000620000 3020000620000 2936000624000
3200 1.1231013 15838000676000 13880000650000 14990000650000 14656000650000
6-10
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TABLE XII. EER algorithm in two dimensions at theu point: integrated autocorrelation times an
dynamic critical exponentszint , obtained by fittingt int5BNzint. The number of degrees of freedom of the
is 2.

N t int,R
g
2 t int,R

e
2 t int,R

m
2 t int,E

100 4520610 3166.265.8 3082.865.4 2504.464.0
800 55950064100 36230062100 35790062100 22280061000
1600 2890400628300 1779500613700 1778000613600 102950066000
3200 139530006120000 8630000659000 8698000659000 4185000620000

zint 2.32160.002 2.28260.002 2.29160.002 2.151060.0011
B 0.102060.0013 0.086460.0008 0.080060.0010 0.126060.0008
x2 9.0 1.22 3.73 149
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We have analogously determined the integrated auto
relation times using the self-consistent windowing meth
with c515. The results fort int,A are reported in Table XII.
Notice that in this case the integrated autocorrelation tim
for the energy are close to those of the radii, as it should
expected, since at theu point also the energy is a ‘‘slow’
variable. In all cases,texp,A;1–3t int,A and thus the choice
c515 should give a small systematic error due to the tr
cation of the autocorrelation functions.

The integrated autocorrelation times have been fitted w
the ansatzBNzint, in order to computezint,A . The results are
reported in Table XII. In all cases, the purely statistical err
we have reported are too small. For the radii, the expon
zint should be the same, and thus the error is at least a fa
of ten larger. Comparing the estimates of Table XII, we
rive at the final result

zint,R252.3060.03, ~33!

which, by comparing with Eq.~32!, giveszint,R25zexp,R2, as
expected.

FIG. 9. Dynamic scaling analysis for the EER algorithm in tw
dimensions at theu point: plots oftscal,R

m
2 (t;N) vs tN2b. Herea

50.0015,b52.31.
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The result forE is somewhat lower, but the very largex2

indicates that corrections to scaling are significant. In or
to see if there is a systematic trend we have determined
effectivezint,E , by computing

ẑint,E~N1 ,N2!5F ln
t int,E~N1!

t int,E~N2!G S ln
N1

N2
D 21

. ~34!

We obtain ẑint,E(100,800)52.158(3), ẑint,E(800,1600)
52.208(15),ẑint,E(1600,3200)52.023(15). It is difficult to
observe a systematic trend, but in any case a systemati
crease towards 2.30 seems to be excluded. On the con
the data seem to indicate thatzint,E decreases below the valu
of Table XII. Thus, also at theu point we havezint,E
,zexp,E , although the difference is much smaller than in t
caseb50.

These results are confirmed by a scaling analysis. In
9, we report the scaling variabletscal,R

m
2 (t;N). We observe a

very good scaling behavior and correspondingly we are a
to obtain quite reliable estimates of the critical exponenta
and b. The same good behavior is observed for all obse
ables. The estimates ofa and b are reported in Table XIII.
For all observables,b is compatible with the estimates o
Table XI, confirming the estimate~32!. For the radii,a50,
in agreement with Table XII. For the energy,a is clearly
nonvanishing, confirming thatzint,E,zexp,E . Using Eq.~19!,
we havezint,E52.1560.03, which is in agreement with th
previous results.

VIII. CONCLUSIONS

The simulations we have presented show that the re
tion dynamics is quite successful, even at theu point. The
values ofz we have found are only marginally higher than
which is the best possible behavior for a dynamics that

TABLE XIII. Dynamic exponentsa and b for the EER algo-
rithm in two dimensions at theu point.

Rg
2 Re

2 Rm
2 E

b 2.31560.015 2.3060.02 2.3160.02 2.3160.02
a 0.001560.0015 0.00260.002 0.001560.0015 0.0760.01
6-11
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volves local and bilocal moves. Of course, for a practi
implementation one may want to explore several varia
that, although not changing the critical behavior, may s
speed up the dynamics by a constant~large! factor. First of
all, in practical implementations it is important to use t
second version of the reptation dynamics~see Sec. 2 of the
Appendix!. Second, the B22 moves are quite rarely p
formed and in any case much less than the kink-end/end-
moves. For instance, in two dimensions atb50, B22~BKE!
moves are performed with probability 0.08~0.13!. Moreover,
BKE moves appear to be quite successful in speeding up
dynamics of the energy, that is one of the slow variables
the presence of interactions. Therefore, in the compact
gime an efficient dynamics can be obtained by mixing
gether:~i! the reptation move;~ii ! the BKE move;~iii ! purely
local moves L0 and L1. A purely local algorithm that leav
the correct measure invariant can be obtained from that
scribed in Sec. 1 of the Appendix by settingp(0)51/2 in all
dimensions andp(22)50. In this case, it is convenient t
include also crankshaft moves, see Sec. 4.1 of Ref.@16#.
Such an implementation of the EER algorithm should be
method of choice for fixedN simulations in the compac
regime.

APPENDIX: THE BASIC MOVES

In this appendix, we introduce the basic moves that
use in our simulation:~i! The kink-kink local/bilocal move;
~ii ! The reptation move;~iii ! The kink-end/end-kink reptation
move. In Ref.@16# it was shown that moves~iii ! are enough
to obtain an ergodic algorithm. In two dimensions one c
limit oneself to consider only moves~i!, but this algorithm is
inefficient because of the slow motion of the endpoint. R
tation moves are never ergodic because of the possibility
the end points get trapped.

1. Kink-kink local Õbilocal move

In this section we define the kink-kink local/bilocal mov
@16#. In order to describe the algorithm it is important
classify the possible configurations of three successive l
~see Fig. 10!: ~1! the bonds have the same direction~I con-
figuration!; ~2! two consecutive bonds have the same dir
tion, while the third one is perpendicular to them~L configu-
ration!; ~3! the first and the third bonds are perpendicular
the second one, and they are either parallel or perpendic
to each other~S configuration!; ~4! the first and the third

FIG. 10. Configurations of three consecutive links:~a! configu-
ration of typeI; ~b! configuration of typeL; ~c! configuration of type
S; ~d! configuration of typeU.
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bonds are perpendicular to the second one, and they are
tiparallel to each other~U configuration!. An iteration works
as follows:

Step 1. Choose a random sitei of the current walkv, 0
< i<N. If i 5N, propose an L1 move and go to step 5.

Step 2. Determine the configuration of the subwalkv@ i
21,i 12#. If i 5N21, we imagine adding a linkDv(N)
parallel toDv(N21), so that the possible configurations a
of type L and I. Analogously, if i 50, we imagine adding a
link Dv(21) parallel toDv(0).

Step 3. Draw a random numberr, uniformly distributed in
@0,1#. Depending on the configuration ofv@ i 21,i 12#, do
the following:

~1! I: If r .(2d22)p(22), perform a null transition and
the iteration ends. Otherwise, go the next step.

~2! L: If r .(2d23)p(22)1p(0), perform a null transi-
tion and the iteration ends. If (2d23)p(22),r ,(2d
23)p(22)1p(0), propose an L0 move and go to step
Otherwise, go to the next step.

~3! S: If r .(2d24)p(22)12p(0) perform a null transi-
tion and the iteration ends. If (2d24)p(22),r ,(2d
24)p(22)12p(0) propose an L0 move: there are two po
sibilities which are chosen amongst randomly; then go
step 5. Otherwise, go to the next step.

~4! U: Go to the next step.
Step 4. Choose a second integerj uniformly in the disjoint

intervals, 21< j <N, j 5” i 21,i ,i 11. If j 521,N make a
null transition and the iteration ends. Otherwise, depend
on the configuration ofv@ i 21,i 12#, do the following:

v@ i 21,i 12# is of type I, S, L: if j 50 or j 5N21, or if
v@ j 21,j 12# is not of typeU perform a null transition and
the iteration ends. Otherwise, propose a B22 move, cut
the kink v@ j 21,j 12# and adding it tov@ i ,i 11# in one of
the possible directions@50#. Then, go to the next step.

TABLE XIV. Proposal probabilityppr and probabilitypSA that
the proposed walk is self-avoiding for local~L0 and L1! and bilocal
~B22! moves. We consider noninteracting SAWs in two and th
dimensions.

d N L0, L1 B22

100 ppr 0.496 0.0952
pSA 0.751 0.852

300 ppr 0.499 0.0963
2 pSA 0.751 0.851

700 ppr 0.500 0.0966
pSA 0.751 0.851

1000 ppr 0.500 0.0967
pSA 0.751 0.851

100 ppr 0.443 0.0850
pSA 0.800 0.882

3 300 ppr 0.446 0.0864
pSA 0.798 0.878

1000 ppr 0.447 0.0869
pSA 0.798 0.877
6-12
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v@ i 21,i 12# is of typeU: according to the configuration
of v@ j 21,j 12# ~if j 50,N21 imagine adding links as be
fore! do the following:

~1! v@ j 21,j 12# is of type I, S, L: If r ,c(conf)p(22)
~note that the random numberr appearing here is the sam
used in Step 3!, propose a B22 move: cut the kinkv@ i
21,i 12# and add it on top ofv@ j , j 11# in a possible ran-
dom direction@50#, and then go to step 5. Otherwise, pe
form a null transition and the iteration ends. Herec(conf)
5(2d22), (2d24), (2d23) for conf 5 I, S, L, respec-
tively.

~2! v@ j 21,j 12# is of typeU: If r ,(2d23)p(22), pro-
pose a B22 move: cut the kinkv@ i 21,i 12# and add it on
top of v@ j , j 11# in a possible random direction@50#, and
then go to step 5; if (2d23)p(22),r ,2(2d23)p(22),
propose a B22 move: cut the kinkv@ j 21,j 12# and add it
on top ofv@ i ,i 11# in a possible random direction, and the
go to step 5. Otherwise, perform a null transition and
iteration ends.

Step 5. Check for self-avoidance. If the proposed ne
walk is self-avoiding keep it, otherwise perform a null tra
sition.

Step 6. Compute the difference in energy between the
and the new walk and perform a Metropolis test.

The algorithm we have presented depends on the p
abilities p(0) andp(22), that are the probabilities of L0 an

TABLE XV. Proposal probabilityppr , probability pSA that the
proposed walk is self-avoiding, and probabilitypMet that the pro-
posed self-avoiding walk is accepted in the Metropolis test.
local ~L0 and L1! and bilocal~B22! moves. We consider SAWs in
two dimensions at theu point.

N L0, L1 B22

ppr 0.463 0.158
100 pSA 0.429 0.525

pMet 0.701 0.610

ppr 0.462 0.162
800 pSA 0.394 0.416

pMet 0.711 0.561

ppr 0.462 0.163
1600 pSA 0.389 0.399

pMet 0.714 0.556

ppr 0.462 0.163
3200 pSA 0.385 0.388

pMet 0.716 0.553

TABLE XVI. Probability of the different moves for differentb
andd.

d b L0,L1 B22 Null

2 0 0.38 0.08 0.54
3 0 0.36 0.08 0.56
2 bu 0.13 0.03 0.84
03110
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B22 moves respectively. As discussed in Ref.@16#, the fastest
dynamics is obtained by settingp(0)5p(22)51/2 in two
dimensions, andp(0)51/3, p(22)51/6 in three dimensions

It is interesting to compute the probability of a success
move. For noninteracting SAWs such a probability is t
product of two terms: the probabilityppr that a given move is
proposed and the probabilitypSA that the proposed walk is
self-avoiding. At theu-point one must additionally multiply
by the probability that the Metropolis test is successful. N
merical estimates of these probabilities are reported in Ta
XIV and XV. Note that they have a very weakN dependence
and clearly approach a constant value asN goes to infinity.

Using the above presented results, we can compute
probability of a successful move. They are reported in Ta
XVI. Note that at theu point the probability of a null tran-
sition is quite large and in particular B22 moves are qu
rarely performed.

2. Reptation move

There are two different implementations of the reptati
~or slithering-snake! move. The first one, which satisfies d
tailed balance, works as follows~Version 1!:

Step 1. With probability 1/2 deletev@N21,N# and add a
new link at the beginning of the walk; otherwise, dele
v@0,1# and add a new link at the end of the walk.

Step 2. Check if the new walk is self-avoiding. If it is
keep it, otherwise perform a null transition.

Step 3. Compute the difference in energy between the
and the new walk and perform a Metropolis test.

A second version uses an additional flag that speci
which of v(0) andv(N) is the ‘‘active’’ end point. It works
as follows@Version 2#:

Step 1. Delete one bond at the ‘‘active’’ end point an
append a new one at the opposite end of the walk.

Step 2. If the new walk is self-avoiding keep it, otherwis
stay with the old walk, and change the flag, switching t
active end point.

Step 3. Compute the difference in energy between the
and the new walk and perform a Metropolis test.

This algorithm does not satisfy detailed balance, but it sa
fies the stationarity condition generating the correct proba
ity distribution.

It is interesting to compute the probability of success o
reptation move. In the absence of interactions it is sim
given by the probability that the proposed walk is se
avoiding. Such a probability is reported in Table XVII. Th
reptation move is quite successful, being accepted with h
probability in both two and three dimensions.

r

TABLE XVII. Probability pSA that the proposed walk is self
avoiding for the reptation move in two and three dimensions.
consider noninteracting SAWs.

d N5100 N5300 N51000

2 0.882 0.880 0.880
3 0.938 0.937 0.937
6-13
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At the u point, we must also consider the probability th
the proposed walk passes the Metropolis test. Numerica
sults are reported in Table XVIII. Since the walk is mo
compact,pSA is lower than in the noninteracting case, a
though still quite large. Multiplying the two probabilities w
see that the reptation move is accepted in 35% of the ca
Note that this probability is larger than the probability of
local or bilocal B22 move, see Table XVI.

3. Kink-endÕend-kink move

The kink-end/end-kink move uses BKE moves~see Fig.
3!. It consists of the following steps:

Step 1. Choose a random sitei of the current walk with
0< i<N22.

TABLE XVIII. Probability pSA that the proposed walk is self
avoiding and probabilitypMet that the proposed self-avoiding wal
is accepted in the Metropolis test. For reptation moves, we cons
SAWs in two dimensions at theu point.

N5100 N5800 N51600 N53200

pSA 0.643 0.566 0.551 0.540
pMet 0.697 0.663 0.658 0.654
,

fo
ion

o
,
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Step 2. Propose an end-kink move with probability (2d
22)p or a kink-end move with probability (2d21)2p. In
the first case delete the last two bonds of the walk and in
a kink on the bondDv( i ) in one of the (2d22) possible
orientations. In the second case, ifiÞ0 andv@ i 21,i 12# is
a kink, remove it and attach two bonds at the end of the w
in one of the (2d21)2 possible ways. Otherwise, perform
null transition and the iteration ends.

Step 3. Check if the proposed walk is self-avoiding. If it i
keep it, otherwise make a null transition.

Step 4. Compute the difference in energy between the
and the new walk and perform a Metropolis test.
The fastest dynamics is obtained@16# for p51/11 in d52,
and p51/29 in d53. A slightly more efficient implementa
tion is discussed in Ref.@16#.

We have computed numerically the probability that
kink-end or an end-kink move is accepted. We find 0.1
0.138, 0.138 forN5100,300,700, respectively. The probab
ity of a null transition is, therefore, quite large, much larg
than for a kink-kink bilocal move. Note, however, that
kink-end/end-kink move is performed more often than a B
move and thus this type of moves should be slightly m
efficient in updating the part of the walk that is far from th
end points than B22 moves.

er
es,

g

A.

J.
@1# P. G. de Gennes,Scaling Concepts in Polymer Physics~Cor-
nell University Press, Ithaca, NY, 1979!.

@2# J. des Cloizeaux and G. Jannink,Les Polyme`res en Solution
~Les Editions de Physique, Les Ulis, 1987!; English transla-
tion: Polymers in Solution: Their Modeling and Structure~Ox-
ford University Press, Oxford, 1990!.

@3# K.F. Lau and K.A. Dill, Macromolecules22, 3986~1989!.
@4# A. Sali, E. Shakhnovich, and M. Karplus, Nature~London!

369, 248 ~1994!.
@5# P.H. Verdier and W.H. Stockmayer, J. Chem. Phys.36, 227

~1962!.
@6# A.K. Kron, Vysokomol. Soedin. Ser. A7 1228~1965! @Polym.

Sci. U.S.S.R.7, 1361~1965!#.
@7# A.K. Kron, O.B. Ptitsyn, A.M. Skvortsov, and A.K. Fedorov

Mole. Biol. ~Moscow! 1, 576 ~1967! @Mol. Biol. ~Moscow! 1,
487 ~1967!#.

@8# F.T. Wall and F. Mandel, J. Chem. Phys.63, 4592~1975!.
@9# F. Mandel, J. Chem. Phys.70, 3984~1979!.

@10# N. Madras and A.D. Sokal, J. Stat. Phys.47, 573 ~1987!.
@11# N. Madras and G. Slade,The Self-Avoiding Walk~Birkhäuser,
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